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Measuring Digital Development: Ranking Using Data 

Envelopment Analysis (DEA) and Network Readiness 

Index (NRI) 
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Abstract. The Network Readiness Index (NRI) is a composite index comprising 

three levels (pillars, sub-pillars and individual indicators) that benchmarks the 

digital development of countries based on various aspects of “network 

readiness”. In contrast to the International Digital Economy and Social Index (I-

DESI) of the European Union (EU), it aims to provide an inclusive, truly global 

view on digital transformation: NRI’s 2021 edition shows the development of 

134 countries compared to 45 countries in I-DESI, which measures only the most 

developed countries. The aim of this presentation is to test the robustness of 

NRI’s scoring model using the Data Envelopment Analysis (DEA) Without 

Explicit Input (WEI) and Common Weight Analysis (CWA) methods. After 

establishing the rankings based on the aforementioned DEA models, we compare 

the digital development of the countries in our data set, and evaluate the impact 

of the different models on the ranking of countries. 

Keywords: Digital transformation measurement, Network Readiness Index, 

Data Envelopment Analysis (DEA), DEA Without Explicit Input (WEI), 

Common Weight Analysis (CWA). 

1 Introduction 

Proper measurement of the digital economy and society is a key factor in understanding 

the state of digital transformation and formulating sound strategies for the green and 

digital transition. Based on extant definitions, Vial developed a conceptual definition 

of digital transformation as “a process that aims to improve an entity by triggering 

significant changes to its properties through combinations of information, computing, 

communication, and connectivity technologies” [1]. McKinsey differentiates four types 

of digital transformation, which are business process, business model, domain and 

organizational. At the macro level, digital transformation can be understood as a 

complex process involving transformational changes in the economic and social 

development of countries, achieved with the help of digital technologies. 

In our earlier papers [2], [3], we used a data set comprising the “five principal 

dimensions” of the European Union’s International Digital Economy and Society Index 

(I-DESI) to establish a ranking of the 28 (pre-Brexit) EU member states and the Russian 
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Federation with Data Envelopment Analysis (DEA) models. In this paper, we aim to 

evaluate the digital development of Russia and other CIS (Commonwealth of 

Independent States) countries with DEA models, using the sub-pillars of the Portulans 

Institute’s Network Readiness Index (NRI). 

NRI is a composite index comprising 4 main pillars, 12 sub-pillars and 62 individual 

indicators [4]. The sub-pillars are presented in Table 1. Digital transformation is a 

process that is happening at all levels: internationally, nationally and locally. NRI 

measures digital development at the country level and establishes a ranking of countries 

based on the digital development of technology, people, governance and impact. 

Table 1. Pillars and sub-pillars of the Network Readiness Index. 

Pillars Sub-pillars Weights of 

sub-pillars 

Technology 

Access 1/12 

Content 1/12 

Future 

Technologies 
1/12 

People 

Individuals 1/12 

Businesses 1/12 

Governments 1/12 

Governance 

Trust 1/12 

Regulation 1/12 

Inclusion 1/12 

Impact 

Economy 1/12 

Quality of Life 1/12 

SDG 

Contribution 
1/12 

Technology is the main aspect of the network economy and therefore is the first pillar 

of NRI, which measures the availability and quality of access, content and future 

technologies. The People pillar measures ICT usage at three levels of analysis: 

individuals, businesses and governments. The Governance pillar reflects the quality of 

formal and informal institutions that are crucial to the proper functioning of the digital 

economy. Finally, the Impact pillar measures the broader economic, social and human 

impact of “readiness in the network economy”.  

In the next chapter, we introduce the Data Envelopment Analysis (DEA) Without 

Explicit Input (WEI) and the DEA Common Weight Analysis (CWA) methods, which 

are used in the third chapter to evaluate the robustness of NRI’s scoring model. The 

last, fourth chapter presents our conclusions. 
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2 DEA Without Explicit Inputs and Common Weight Analysis 

The first full-fledged DEA model was developed by Charnes, Cooper and Rhodes [5], 

which was followed by countless model versions and extensions by various authors. 

For each sub-pillar in the Network Readiness Index (NRI), the ideal value is “as high 

as possible”, thus all of them should be treated as output criteria in the DEA models. 

As there are no criteria to be minimized, there are no input variables in our models. In 

the literature, such models are called DEA Without Explicit Inputs (DEA/WEI) and/or 

the DEA-type Composite Indicators (DEA/CI) method [6], [7].  

The DEA/WEI model was first applied by Fernandez-Castro and Smith to a real-

world problem [8] and then by Despotis [9] and Liu et al. [10]. Due to the “shape” of 

the model, it was also used to create composite indicators, as mentioned above. 

The basic model of DEA may be unsuitable for establishing an unambiguous ranking 

(strict total order) of countries, which is our goal now, because the DEA efficiencies of 

several decision making units (DMUs, in our case countries) can reach the maximum, 

i.e. value one, which means that these countries would be tied in the ranking. However,

we may also face the problem that each DMU achieves efficiencies that can be

calculated with different weights. Therefore, a method must be found to evaluate all

possible decision making units with equal weights.

One of the first Common Weight Analysis (CWA) models was proposed by 

Podinovski and Athanassopoulos [11]. Their model is called the Maximin DEA model, 

where we first find the decision making unit that gives the lowest efficiency for a given 

weight vector, and then look for the weight vector for which we maximize this 

minimum. The method got its name from this procedure. 

To solve this problem, a DEA procedure must be found for which all possible DMUs 

are evaluated with equal weights. This method is called the common weights procedure. 

The simplest form of the method was proposed by Liu and Peng [12]. The model traces 

the search for common weights to solve a linear programming problem whose 

constraint conditions contain linear constraints that include efficiency. 

Finally, the third DEA model using common weights determines weights using 

compromise programming. This procedure was proposed by Kao and Hung [13]. The 

objective function here is a distance function, which can be Manhattan, Euclidean, or 

Chebyshev distance functions. To do this, however, an anti-ideal or ideal point must be 

defined in the space of DMUs’ efficiency. Anti-ideal efficiency can be e.g. zero 

efficiency, while the ideal may be the previously defined DEA efficiencies, or the 

efficiency to be achieved for each DMU. Only the two ideal efficiencies are used in this 

paper. For the ideal point, find the weight at which the ideal point is closest to the set 

of weights. For anti-ideal points, we look for the furthest efficiency. Vector E* 

comprises the DEA efficiencies, which show the best efficiencies for each DMU. 

The vector of possible weights of the DEA model can be determined by the system 

of equations (1) to (2). Inequalities (1) shows the upper limit of DEA efficiency, i.e. 

one, while inequality (2) defines the non-negativity of weights. The number of decision-

making units is p, and vector yj comprises the values of the jth decision making unit, in 

this case country. The yj vectors can be summarized in the Y matrix. Vector u comprises 

the DEA weights. The DEA/WEI weights are equal to vector u·Y. 
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u·yj ≤ 1; j = 1,2,...,p. (1) 

u ≥ 0. (2) 

The objective functions of possible DEA models are listed in Table 2. 

Table 2. The DEA models used to determine the optimal weights. 

DEA Models Objective Functions (Fi(u)) Literature 

Maximin model F1(u) = min
1𝑗𝑝 

𝐮 · 𝒚𝒋  max [11] 

Common Weight 

Analysis 

F2(u) = u·Y1  max [12] 

Compromise 

Programming with 

ideal efficiency 1 

F3(u) =d2(u·Y; 1)  min  

F4(u) =d+(u·Y; 1)  min 

[13] 

Compromise 

Programming with 

ideal efficiency E* 

F5(u) =d2(u·Y; E*)  min  

F6(u) = d+(u·Y; E*)  min 

[14] 

Based on our calculations, we establish six rankings. This is because the result of the 

Common Weight Analysis for Manhattan distances gives the same result for both ideal 

vectors, i.e., the DEA efficiency E* and the summation vector 1 as well [14]. The 

distance functions of compromise programming are as follows: 

Euclidean distance (k = 2): 𝑑2(𝒖 · 𝐘;  𝑬) = √∑ (𝒖 ∙ 𝒚𝑗 − 𝐸𝑗
𝑝
𝑗=1 )2 , 

Chebyshev distance (k = +): 𝑑+∞(𝒖 · 𝐘;  𝑬) = max
1≤𝑗≤𝑝

|𝒖 ∙ 𝒚𝑗 − 𝐸𝑗| , 

where vector E is a possible ideal efficiency vector, which can be equal to efficiency 

vectors E* or 1. 

3 Ranking with the DEA/WEI and CWA methods 

Before presenting the results, we show that for the DEA / WEI model, the Manhattan 

distance gives the same result for all ideal points, so the DEA efficiency and maximum 

efficiency vectors are the same. Therefore, it is sufficient to determine the efficiency 

obtained by the common weight analysis method. Since the sum of the given 

efficiencies does not depend on the weights, it is sufficient to minimize the expression 

−u∙Y∙1, which means that the minus of the linear function should be maximized. This

also means that we got the CWA model back. Therefore, minimizing the Manhattan
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distance in the DEA / WEI models also leads to the optimization problem of the CWA 

model. 

The mathematical form of the six common weights problems can be described as 

follows: 

u·yj ≤ 1; j = 1,2,...,p. (1’) 

u ≥ 0. (2’) 

Fi(u) → min/max, i = 1,2,...,6. (3’) 

Problems 1, 2 should be maximized, while problems 3, 4, 5 and 6 should be minimized 

due to distance. The analytical form of the functions is given in Table 2. 

Consider the linear relationship between the efficiencies determined by the common 

weights methods and the efficiency of DEA. Two types of correlations can be 

considered. 

Table 3 shows the Pearson correlation coefficients. Since these efficiencies are 

continuous variables, Pearson correlation can be used. The correlation coefficients all 

have a value close to 1, indicating a strong linear association in all cases. The question 

can also be asked whether it is worthwhile to calculate efficiencies without defining 

DEA efficiencies. If there are p DMUs (in our case countries), then if DEA efficiency 

is considered to be an ideal virtual DMU, then these efficiencies must be determined 

first, which means solving p linear programming problems. Determining common 

weights is a solution to an additional LP. Conversely, if only the maximum available 

efficiency, i.e. efficiency one, distance from a possible efficiency is determined, then 

only a single linear programming problem needs to be solved. 

Table 3. Pearson correlation between DEA efficiencies and common weights. 

Pearson Manhattan Euclidean Chebysev 

DEA 0.937* 0.946 0.960 

One 0.943 0.932 0.943 

*Instead of the Manhattan distance, the weights of the Maximin model are included

According to our results (presented in Table 3), the optimal solution of the Chebyshev 

distance by minimizing the distance from vector 1 shows a correlation of 0.943 from 

the DEA distance, which can be considered strong. However, the two different 

computational efficiencies do not show significantly different results. This may suggest 

that it is not necessary to determine all p DEA efficiencies, which can lead to time and 

cost savings. 
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Table 4. Kendall tau-b correlation between DEA efficiencies and common weights. 

Pearson Manhattan Euclidean Chebysev 

DEA 0.798* 0.806 0.831 

One 0.788 0.784 0.807 

*Instead of the Manhattan distance, the weights of the Maximin model are included

Kendall's tau-b correlation shows the correlation between rankings. This correlation 

coefficient indicates a strong stochastic correlation when it is higher than 0.7 and close 

to 1, which is the case for all values in Table 4, calculated from our NRI data set. The 

results obtained with the Chebyshev distance provides the strongest linear relationship 

for both ideal efficiency vectors, with correlation coefficients of 0.831 (DEA) and 0.807 

(vector 1) respectively. 

4 Conclusions 

In this paper, we demonstrate how the DEA/WEI and DEA/CWA method can be used 

to provide a viable framework for ranking the CIS countries and the Russian Federation 

in the absence of explicit input criteria and predetermined weights that are required by 

the classical DEA and with pre-determined weights for the original NRI scoring model. 

These methods can eliminate the need for a pre-defined weighting system used by the 

original composite index, replacing them with an intrinsic one based on the statistical 

properties of the data set.  

According to our rankings, the Baltic countries (Estonia, Lithuania, Latvia) 

demonstrate respectable results in digital development relative to the Slavic, Caucasian 

and Central Asian countries of the CIS. Among CIS countries, Russia is ranked fourth 

and Tajikistan has the lowest ranking. Among Central Asian countries, Kazakhstan has 

the highest rank when the countries are ranked according to their DEA efficiencies.  

In future studies, we plan to examine the sub-pillars of NRI in more detail. A number 

of statistical methods, such as correlational analysis, principal components analysis and 

cluster analysis can be used to investigate the statistical properties of the data set. 
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On the Non-Emptiness of the Core
of a Cooperative Fuzzy Game

David Bartl1

Department of Informatics and Mathematics, School of Business Administration in
Karviná, Silesian University in Opava, Univerzitńı náměst́ı 1934/3, 733 40 Karviná,

Czechia
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Abstract. We introduce the concept of a fuzzy coalition structure on
a finite set of players. Then, we propose a new model of a cooperative
fuzzy game with transferable utility: an existing coalition is assumed to
endeavour in a branch of industry, and a deviation of a new coalition
from the coalition structure is seen as an opportunity of the coalition.
Based on these premisses, we introduce the concept of the core of the
cooperative fuzzy TU-game with respect to a general fuzzy coalition
structure. Finally, we define the concept of balancedness and formulate
a generalization of the Bondareva-Shapley Theorem.

Keywords: Cooperative fuzzy TU-game · Core · Balanced game · Bon-
dareva-Shapley theorem.

1 Introduction

Consider a classical cooperative game of n players with transferable utility. The
coalition is any subset of the set N = {1, 2, . . . , n} of the players, and the potency
set P(N) = { K : K ⊆ N } of the set N is the collection of all coalitions K ⊆ N
that can potentially emerge. Finally, if a coalition K ⊆ N emerges, then it will
achieve its total profit of v(K) units of some transferable utility (e.g. money); it
is assumed that v(∅) = 0. In other words, the cooperative game is given by its
coalition function, which is a mapping v: P(N) → R such that v(∅) = 0.

The coalition structure is any partition of the set N of the players; that is,
the coalition structure is any collection S = {S1, S2, . . . , Sr} of coalitions such
that

∪r
p=1 Sp = N and Sp ∩ Sq = ∅ whenever p ̸= q for p, q = 1, 2, . . . , n, and

also ∅ /∈ S.
Assume that a coalition structure S = {S1, S2, . . . , Sr} has crystallized. It

means that the coalitions S1, S2, . . . , Sr have emerged, they exist now, and they
will achieve the profits v(S1), v(S2), . . . , v(Sr), respectively. Now, the purpose
is that the players within each coalition S1, S2, . . . , Sr divide the total profit of
their coalition among themselves. The division of the profit among the players
is described by the payoff vector.

The payoff vector is any vector a = (ai)
n
i=1 ∈ Rn, where ai is the profit

apportioned to the i-th player for i = 1, 2, . . . , n. It is usual to require that
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the payoff vector belongs to a certain solution concept of the cooperative game.
Informally speaking, the solution concept is a mapping that assigns a certain set
of payoff vectors (i.e. a subset of Rn) to the coalition function v: P(N) → R and
to the coalition structure S = {S1, S2, . . . , Sr}. The core [8, 6, 7] is an example
of the solution concept.

The core of the cooperative game with transferable utility (TU-game) given
by the coalition function v with respect to the coalition structure S is the set

C =
{

a ∈ Rn :
∑
i∈S

ai = v(S) for S ∈ S and
∑

i∈K

ai ≥ v(K) for K ∈ P(N) \ S
}

,

see [1]. In words, the core is the set of all the payoff vectors a ∈ Rn that satisfy
the conditions of feasibility (

∑
i∈S ai ≤ v(S) for S ∈ S), efficiency or group

rationality (
∑

i∈S ai ≥ v(S) for S ∈ S), and group stability (
∑

i∈K ai ≥ v(K)
for K ∈ P(N) \ S). Now, the key question is whether the core is non-empty.

The next classical result provides an answer to the question:

Bondareva-Shapley Theorem [3, 9]. The core C of the cooperative TU-game
given by the coalition function v with respect to the coalition structure S = {N}
is non-empty if and only if the game is balanced.

As we can see, the classical Bondareva-Shapley Theorem provides the answer
in the special case when the coalition structure consists of the grand coalition
(S = {N}) only. We ask whether we can define the concept of balancedness
with respect to a general coalition structure S = {S1, S2, . . . , Sr} and prove the
respective generalization of the Bondareva-Shapley Theorem. Regarding the gen-
eralization in the case of cooperative crisp TU-games, see [2]. Now, our purpose
is to extend the results further to the case of cooperative fuzzy TU-games.

2 The core and balancedness of fuzzy TU-games

Consider again a cooperative game of n players with transferable utility. Now,
the fuzzy coalition is any fuzzy subset K̃ of the set N = {1, 2, . . . , n} of the
players; we denote this fact by writing K̃ ⊆̃ N . Recall that any fuzzy subset
K̃ ⊆̃ N is given by its membership vector κ ∈ [0, 1]N , which is here understood
as a row vector κ = (κ1 κ2 . . . κn ) with 0 ≤ κi ≤ 1 for i ∈ N . Notice that
if the membership vector is restricted so that κ ∈ {0, 1}N ; that is, κi ∈ {0, 1}
for i ∈ N , then it corresponds to the crisp coalition K ⊆ N , with i ∈ K if and
only if κi = 1 for i ∈ N . The membership vector corresponding to the empty
coalition ∅ and to the grand coalition N is χ∅ and χN , with χ∅

i = 0 and χN
i = 1,

respectively, for i ∈ N .
The collection P̃(N) = { K̃ : K̃ ⊆̃ N } of all fuzzy subsets of the set N con-

tains all the fuzzy coalitions K̃ ⊆̃ N that can potentially emerge. This collection
is identified with the aforementioned set [0, 1]N of all the membership vectors κ.

The fuzzy coalition structure is any indexed collection S̃ = (S̃p)p∈R of fuzzy

coalitions S̃p ⊆̃ N with membership vectors σp ∈ [0, 1]N for p ∈ R, where R is
an index set, such that

∑
p∈R σp = χN and σp ̸= χ∅ for p ∈ R. Notice that,
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even though the set N of the players is finite, the index set R may be infinite
and a fuzzy coalition S̃ ⊆̃ N may be present several times in the fuzzy coalition
structure S̃; that is, we may have S̃p = S̃q for distinct p, q ∈ R. Moreover, if the
membership vectors are restricted so that σp ∈ {0, 1}N , then the index set R is

finite, let R = {1, 2, . . . , r}, say, and the fuzzy coalition structure S̃ reduces to
the crisp coalition structure S = {S1, S2, . . . , Sr} with Sp = { i ∈ N : (σp)i = 1 }
for p = 1, 2, . . . , r. We obviously have

∪r
p=1 Sp = N and Sp ∩ Sq ̸= ∅ iff p = q

for p, q = 1, 2, . . . , r.

Assume that a fuzzy coalition structure S̃ = (S̃p)p∈R has crystallized. It

means that the fuzzy coalitions S̃p ⊆̃ N , for p ∈ R, have emerged and exist. We
interpret the fact that 0 ≤ (σp)i ≤ 1 for p ∈ R so that the player i is involved in

the coalition S̃p for “part-time job” in general; that is, the player is not involved
in the coalition at all if (σp)i = 0, the player is involved for “full-time job” if
(σp)i = 1, and the player is involved for “part-time job” in the remaining cases.

Moreover, we understand the fact that formally the same coalition S̃p = S̃q, for

p, q ∈ R with p ̸= q, can be present several times in the coalition structure S̃
so that the coalitions S̃p and S̃q are actually distinct and they endeavour in
different branches of industry in general. Given this interpretation, it follows
that the total profits achieved by the distinct coalitions S̃p and S̃q, both of
which exist at the same time, may be distinct too in general.

Based on these considerations, we propose a new model of cooperative fuzzy
game with transferable utility. We propose that the cooperative fuzzy game is
given by a pair of functions V : R → R and v: [0, 1]N → R with v(χ∅) = 0. The
first function V assigns the total profit of V (p) units of some transferable utility
to any fuzzy coalition S̃p of the present fuzzy coalition structure S̃ for p ∈ R; that

is, the total profit V (p) is assigned to any coalition S̃p that presently exists and
is active and endeavouring in some branch of industry. (This approach loosely
resembles that of Thrall and Lucas [10].) Now, a new fuzzy coalition K̃ ⊆̃ N may
take the opportunity and form, leave the present coalition structure S̃, and start
to endeavour in a new branch of industry. This is the reason why we consider
the second function v. It assigns the total profit of v(κ) units of the transferable
utility to the fuzzy coalition K̃ ⊆̃ N that decides to take the opportunity and
leave the present coalition structure S̃.

(We remark that the above model can easily be adapted to include the case of
restricted cooperation: Let A ⊆ [0, 1]N be the collection of the membership vec-
tors that correspond to the feasible fuzzy coalitions. We then define the function v
on the collection A only (v: A → R) and adapt the below given considerations
accordingly.)

Now, again, the purpose is that the players within each fuzzy coalition S̃p

divide the total profit V (p) of their coalition among themselves for p ∈ R. The
division of the profit will be described by the payoff matrix which is any matrix
A ∈ RN×R, where aip is the profit apportioned to player i in coalition S̃p for
i ∈ N and for p ∈ R. Moreover, we set aip := 0 for i ∈ N and for p ∈ R such that

(σp)i = 0; that is, the player i is not involved in the fuzzy coalition S̃p at all. (The
total profit of player i achieved via all the player’s involvements in the coalitions
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is the row sum πi =
∑

p∈R aip for i ∈ N .) Our purpose is to extend the classical
concept of the core to the present setting. Thus, consider a payoff matrix A ∈
RN×R. We agree that, if A belongs to the core, then the equations

∑
i∈N aip =

V (p), which express the feasibility and efficiency or group rationality, must hold
for all p ∈ R. Regarding the group stability, assume that a fuzzy coalition
K̃ ⊆̃ N with membership vector κ ∈ [0, 1]N takes the opportunity and deviates
from the present coalition structure S̃. Then the coalition K̃ endeavouring in a
new branch industry will achieve its total profit of v(κ) units of the utility. We
stipulate that each player i ∈ N must have left some coalitions so that the sum of
the players “part-time jobs” exceeds κi. Mathematically speaking, we stipulate
that there exists an index subset K ⊆ R such that

∑
p∈K σp ≥ κ. Though the

index subset K ⊆ R could be infinite in general, we shall assume that the index
subset K is finite to obtain a simple definition of balancedness below. Then the
inequalities which prevent the fuzzy coalition K̃ ⊆̃ N from the deviation from
the coalition structure S̃ are

∑
i∈N

∑
p∈K aip ≥ v(κ) for every finite K ⊆ R such

that
∑

p∈K σp ≥ κ.
To conclude, we define the core of the cooperative fuzzy TU-game given by

its fuzzy coalition structure S̃ = (S̃p)p∈R, the coalition of this fuzzy coalition
structure function V : R → R and the fuzzy coalition function v: [0, 1]N → R
with v(χ∅) = 0 to be the set

C =
{

A ∈ RN×R : (σp)i = 0 =⇒ aip = 0 for i ∈ N and for p ∈ R,∑
i∈N aip = V (p) for p ∈ R,

∑
p∈K

∑
i∈N aip ≥ v(κ) for κ ∈ [0, 1]N and

for finite K ⊆ R such that
∑

p∈K σp ≥ κ
}

Notice that, if A ∈ C, then each of the variables aip is bounded below and
above for i ∈ N and for p ∈ R. Indeed, if i ∈ N and p ∈ R are such that
(σp)i = 0, then aip = 0. Consider now i ∈ N and p ∈ R are such that (σp)i > 0.
Take the membership vector κ ∈ [0, 1]N such that κi = (σp)i and κj = 0 for
j ∈ N \ {i}. Then aip ≥ v(κ), which is a lower bound. Let aip be a lower
bound of aip for i ∈ N and for p ∈ R. Consider again i ∈ N and p ∈ R such
that (σp)i > 0. We then have aip +

∑
j∈N\{i} ajp ≤ ∑

j∈N ajp = V (p), whence

aip ≤ V (p)−∑
j∈N\{i} ajp, which is an upper bound. Let aip be an upper bound

of aip for i ∈ N and for p ∈ R.
Let us suppose wlog that aip ≤ aip for i ∈ N and for p ∈ R. (Should we

have aip > aip, then let aip := aip, say.) Then the closed interval [aip, aip],
endowed with the usual Euclidean topology, is compact, therefore the product
X =

∏
i∈N

∏
p∈R[aip, aip], endowed with the product topology, is a compact

topological space by Tychonoff’s Theorem. Notice that the core C ⊆ X .
It is easy to see that the core C is non-empty if and only if the following

system of linear inequalities, where aip are variables, has a solution:

∑
i∈N,(σp)i>0 aip ≤ V (p) for p ∈ R,

− ∑
i∈N,(σp)i>0 aip ≤ −V (p) for p ∈ R,

(1)
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− ∑
p∈K

∑
i∈N,(σp)i>0 aip ≤ −v(κ) for κ ∈ [0, 1]N and

for finite K ⊆ R such that
∑

p∈K σp ≥ κ.
(2)

Notice that there is a finite number of variables on the left-hand side of each
inequality in (1)–(2). Moreover, it is easy to see that, for any finite subset
I ⊆ N × R and for any constant c ∈ R, the halfspace F =

{
A ∈ RN×R :∑

(i,p)∈I aip ≤ c
}

is a closed set in the product topology of the space X . It

follows that the core C is the intersection of (possibly infinitely many) closed
halfspaces. Since the space X is compact, we conclude that the core C is non-
empty if and only if every finite subsystem of (1)–(2) has a solution; that is,
for any natural numbers r, s ∈ N, for any p1, p2, . . . , pr ∈ R, for any κ1, κ2, . . . ,
κs ∈ [0, 1]N and for any finite K1, K2, . . . , Ks ⊆ R such that

∑
p∈Kq

σp ≥ κq

for q = 1, 2, . . . , s, the following system of linear inequalities, where aip are
variables, has a solution:

∑
i∈N,(σpρ )i>0 aip ≤ V (pρ) for ρ = 1, 2, . . . , r,

− ∑
i∈N,(σpρ )i>0 aip ≤ −V (pρ) for ρ = 1, 2, . . . , r,

− ∑
p∈Kq

∑
i∈N,(σp)i>0 aip ≤ −v(κq) for q = 1, 2, . . . , s.

(3)

The following result is useful:

Gale’s Theorem of the alternative [4, 5]. Let A ∈ Rm×n be a matrix and
let b ∈ Rm be a vector. Then there exists a solution x ∈ Rn to the system of
linear inequalities

Ax ≤ b (4)

if and only if

∀λT ∈ R1×m, λT ≥ 0T: λTA = 0T =⇒ λTb ≥ 0 . (5)

By identifying system (4) with (3), the condition (5) and some calculations
yield the concept of balancedness of the cooperative fuzzy TU-game.

It will be useful to introduce the operation of rounding up. A number σ ∈
[0, 1] is rounded up as follows: we let ⌈σ⌉ = 0 if σ = 0, and ⌈σ⌉ = 1 if σ > 0.
Given a row membership vector σ ∈ [0, 1]N , the operation ⌈·⌉ is applied to the
vector componentwise; that is, we have ⌈σ⌉ ∈ {0, 1}N and ⌈σ⌉i = 0 or ⌈σ⌉i = 1
if σi = 0 or σi > 0, respectively, for i ∈ N .

Recall that the fuzzy coalition structure S̃ = (S̃p)p∈R consists of fuzzy coali-

tions S̃p ⊆̃ N with membership vectors σp ∈ [0, 1]N for p ∈ R. We say that a col-

lection {K̃1, K̃2, . . . , K̃s} of fuzzy coalitions K̃1, K̃2, . . . , K̃s ⊆̃ N with member-
ship vectors κ1, κ2, . . . , κs ∈ [0, 1]N along with a collection {K1,K2, . . . ,Ks} of
finite index sets K1, K2, . . . , Ks ⊆ R such that

∑
p∈Kq

σp ≥ κq for q = 1, 2, . . . , s

is balanced with respect to the fuzzy coalition structure S̃ = (S̃p)p∈R if and only
if

s∑

q=1

∑

p∈Kq

λq⌈σp⌉ =

r∑

ρ=1

µpρ⌈σpρ⌉

15

VOCAL 2022: Short Papers



for some balancing weights λ1, λ2, . . . , λs ≥ 0, for some natural number r ∈ N,
for some indices p1, p2, . . . , pr ∈ R, and for some µp1 , µp2 , . . . , µpr ≥ 0 such that
µp1 + µp2 + · · · + µpr = 1.

Finally, we say that the given cooperative fuzzy TU-game is balanced with
respect to the fuzzy coalition structure S̃ = (S̃p)p∈R if and only if

s∑

q=1

∑

p∈Kq

λqv(κq) ≤
r∑

ρ=1

µpρV (pρ)

for every balanced collection {K̃1, K̃2, . . . , K̃s} of fuzzy coalitions along with the
corresponding collection {K1, K2, . . . , Ks} of the finite index sets.

By combining all the facts together, we come to the main result of this paper:

Bondareva-Shapley Theorem, generalized version. Let a fuzzy cooper-
ative TU-game; that is, a fuzzy coalition structure S̃ = (S̃p)p∈R, a function
V : R → R of the coalition of this fuzzy coalition structure and a fuzzy coali-
tion function v: [0, 1]N → R with v(χ∅) = 0 be given. Then the core C =

{
A ∈

RN×R :
∑

i∈N aip = V (p) for p ∈ R, and
∑

p∈K
∑

i∈N aip ≥ v(κ) for κ ∈ [0, 1]N ,

and also aip = 0 if (σp)i = 0 for i ∈ N and for p ∈ R
}

is non-empty if and only
if the game is balanced.
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Abstract. When using Data Envelopment Analysis (DEA) to support 

management decisions the splitting of criteria into input and output variables is 

often incidental because the decision variables are difficult to interpret from a 

management point of view. This means that all criteria can be considered as input 

but also output variables if the criteria are interpreted correctly. In this 

presentation, we analyze three model versions of the Data Envelopment Analysis 

(DEA). In the first model we define the input and output variables together to be 

maximized, in the other two models we consider each variable as a criterion to 

be minimized/maximized. Accordingly, we examine a classical DEA model, a 

DEA model with explicit input and explicit output, respectively. The efficiency 

results of the models are presented in a supplier selection numerical example. For 

the calculations normalized data will be used. 

Keywords: Supplier Selection, DEA Without Explicit Input (WEI), DEA 

Without Explicit Output (WEO), Common Weight Analysis (CWA). 

1 Introduction 

The Data Envelopment Analysis (DEA) model is a well-known tool for assessing 

efficiency. It is used to support economic decisions in many areas. One of the features 

of the model is that it defines so-called input and output criteria. In their original work, 

Charnes, Cooper and Rhodes [1] give the example of a school to interpret these: for the 

inputs to training, they give the working hours of teachers as an example, while for the 

outputs they give the competencies of students. One group is therefore the set of 

resources that are used (input criteria), and performance improves if less is used, while 

the other group is the result achieved (output criteria), the higher the indicators the 

better. Although a very large number of articles have been published on the 

development and application of DEA [2], relatively few publications have addressed 

the nature of the data used. These have mainly dealt with the issue of undesired outputs 

[3] and the nature of the data (e.g. negativity [4]). However, this problem is less

addressed in the literature. Our article will examine how the three known model variants

of DEA yield results, and how the definition of inputs and outputs affects the final

result. The results of three examples of supplier evaluation will be compared.
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2 Three basic DEA models 

The DEA model was initiated by Charnes, Cooper and Rhodes [1]. After the model was 

set up, countless model versions were developed. When using different models of DEA, 

for each of the criteria, the given criterion is appropriate if it is as high as possible, so 

the criteria can be considered as output. As there are no criteria to be minimized, no 

input criteria exist. The latter model is called in the literature DEA model Without 

Explicit Inputs (DEA/WEI) and/or the DEA-type Composite Indicators (DEA/CI) 

method, as they correspond to the above description [5], [6]. 

The DEA model without explicit input was first applied by Fernandez-Castro and 

Smith to real-world problem [7] and then by Despotis [8] and Liu et al. [9]. Due to the 

shape of the model, it was also used to create composite indicators, as mentioned above. 

The DEA model without explicit output was investigated by Toloo [10]. The DEA 

efficiencies in this case form a fractional programming model with one in the counter. 

This also means that the denominator will be the value to be determined, the reciprocal 

of which is efficiency. 

We first present the basic model of DEA shown by formulas (1) to (3). In equation 

(1) the output criteria are in the numerator and the input criteria are in the denominator. 

Let number m be the number of outputs and number n be the number of inputs. It means

that m + n criteria are examined in this DEA model. The output criteria are maximized,

while the inputs are minimized. If the output variable is to be minimized, the input

should be maximized, we multiply the criterion by minus one and perform a data

alteration.

u·yj / v·xj ≤ 1; j = 1,2,...,p. (1) 

u ≥ 0, v ≥ 0. (2) 

u·yi / v·xi → max. (3) 

If we have to maximize all the criteria, we have to solve the (1WEI) to (3WEI) model. In 

this case, since there is no input, there is no denominator, or its value is one. Then we 

have to solve a smooth linear programming (LP) problem, which can be solved with a 

simple simplex method, even with MS Excel. 

u·yj ≤ 1; j = 1,2,...,p. (1WEI) 

u ≥ 0. (2WEI) 

u·yi → max. (3WEI) 

If we have to minimize all the criteria, we have to solve the (1WEO) to (3WEO) model. In 

this case, since there is no output, there is no numerator, or its value is one. Since there 

is no numerator, we can calculate the reciprocal of the denominator, which is shown by 

the formula (1WEO). Then we have to solve a simple linear programming problem, which 

can be solved as before with MS Excel. 
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v·xj ≥ 1; j = 1,2,...,p. (1WEO) 

v ≥ 0. (2WEO) 

v·xi → min. (3WEO) 

The three models now described are solved in the next section, defining the DEA 

efficiencies. 

3 Determining the DEA efficiency solving the three LP 

problems 

The initial data used for supplier selection are shown in Table 1 [11]. We assume that 

the criteria can be divided into input and output variables. Among the input, i.e. 

management criteria, we need to maximize quality, while among the green variables, 

we need to minimize CO2 emissions. This also means that to solve the (1) to (3) model, 

we have to multiply the two variables by minus one to satisfy the conditions of the DEA 

model.  

Table 1. Basic data. 

Basic 

Data 
Management criteria Environmental criteria 

Min/Max MIN MAX MIN MAX MIN 

Supplier 
Lead time 

(Day) 
Quality 

(%) 
Price ($) 

Reusability 

(%) 
CO2 Emission 

(g) 

1 2 80 2 70 30 

2 1 70 3 50 10 

3 3 90 5 60 15 

4 1.5 85 1 40 20 

5 2.5 75 2.5 65 35 

6 2 95 4 90 25 

7 3 80 1.5 75 15 

8 1.5 85 3.5 85 20 

9 1 70 3.5 55 10 

10 2.5 75 4 45 10 

11 3.5 90 2.5 80 25 

12 2 65 1.5 50 20 

13 3 85 3 75 15 

14 1.5 70 4.5 85 20 

15 1 65 2 75 15 
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The data in Table 1 are normalized to the three models. This procedure was used by 

Gnaldi and Ranalli [12]. The method is the following 

Criteria for maximization: 𝑛𝑖𝑗 =
𝑟𝑖𝑗−𝑟𝑚𝑖𝑛

𝑟𝑚𝑎𝑥−𝑟𝑚𝑖𝑛
, 

Criteria for minimization: 𝑛𝑖𝑗 =
𝑟𝑚𝑎𝑥−𝑟𝑖𝑗

𝑟𝑚𝑎𝑥−𝑟𝑚𝑖𝑛
. 

Tables 3-5 in the Appendix summarize the transformed data used for the current DEA 

model. 

Table 2. DEA efficiencies of the three models. 

Supplier I-O WEI WEO 

1 0.648 0.917 0.800 

2 0.079 0.500 0.459 

3 1.000 1.000 1.000 

4 0.266 0.667 0.528 

5 1.000 1.000 1.000 

6 1.000 1.000 1.000 

7 0.461 0.853 0.603 

8 0.535 0.900 0.686 

9 0.126 0.636 0.500 

10 0.089 0.750 0.614 

11 1.000 1.000 1.000 

12 0.278 0.500 0.504 

13 0.673 0.919 0.825 

14 0.511 1.000 1.000 

15 0.239 0.700 0.459 

Table 2 shows the DEA efficiencies obtained for the three models. It is clear that the 

DEA model without input, resp. output, it gave a very similar solution. The same 

suppliers will be effective in both cases. In the original DEA model, only the 14th 

supplier will not be efficient, while the other four supplier, i.e. the 3rd, 5th, 6th, and 

11th, will remain. It can also be seen the other DEA efficiencies are lower for the 

original model than for the two models. 

4 Conclusion 

The DEA model is a well-known tool for assessing efficiency, which splits criteria into 

input and output criteria. The model is often recommended in the literature for supplier 

evaluation. However, input and output criteria are often difficult to interpret in these 

management decisions. Therefore, our article has examined the criteria groups in three 
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cases. Our examples show that the results are similar but not identical. Further 

interpretation and analysis of the results is an important further task.  
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Appendix 

Table 3. Data for (1) – (3). 

Basic Data Management criteria Environmental criteria 

Min/Max MIN MIN MIN MAX MAX 

Supplier 
Lead time 

(Day) 

Quality 

(%) 

Price 

($) 

Reusability 

(%) 

CO2 Emission 

(g) 

1 0.600 0.500 0.750 0.600 0.800 

2 1.000 0.833 0.500 0.200 0.000 

3 0.200 0.167 0.000 0.400 0.200 

4 0.800 0.333 1.000 0.000 0.400 

5 0.400 0.667 0.625 0.500 1.000 

6 0.600 0.000 0.250 1.000 0.600 

7 0.200 0.500 0.875 0.700 0.200 

8 0.800 0.333 0.375 0.900 0.400 

9 1.000 0.833 0.375 0.300 0.000 

10 0.400 0.667 0.250 0.100 0.000 

11 0.000 0.167 0.625 0.800 0.600 

12 0.600 1.000 0.875 0.200 0.400 

13 0.200 0.333 0.500 0.700 0.200 

14 0.800 0.833 0.125 0.900 0.400 

15 1.000 1.000 0.750 0.700 0.200 

Table 4. Data for (1WEI) – (3WEI). 

Basic Data Management criteria Environmental criteria 

Min/Max MAX MAX MAX MAX MAX 

Supplier 
Lead time 

(Day) 

Quality 

(%) 

Price 

($) 

Reusability 

(%) 

CO2 Emission 

(g) 

1 0.400 0.500 0.250 0.400 0.200 

2 0.000 0.167 0.500 0.800 1.000 

3 0.800 0.833 1.000 0.600 0.800 

4 0.200 0.667 0.000 1.000 0.600 

5 0.600 0.333 0.375 0.500 0.000 

6 0.400 1.000 0.750 0.000 0.400 

7 0.800 0.500 0.125 0.300 0.800 

8 0.200 0.667 0.625 0.100 0.600 

9 0.000 0.167 0.625 0.700 1.000 

10 0.600 0.333 0.750 0.900 1.000 

11 1.000 0.833 0.375 0.200 0.400 
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12 0.400 0.000 0.125 0.800 0.600 

13 0.800 0.667 0.500 0.300 0.800 

14 0.200 0.167 0.875 0.100 0.600 

15 0.000 0.000 0.250 0.300 0.800 

Table 5. Data for (1WEO) – (3WEO). 

Basic Data Management criteria Environmental criteria 

Min/Max MIN MIN MIN MIN MIN 

Supplier 
Lead time 

(Day) 

Quality 

(%) 

Price 

($) 

Reusability 

(%) 

CO2 Emission 

(g) 

1 0.400 0.500 0.250 0.600 0.800 

2 0.000 0.167 0.500 0.200 0.000 

3 0.800 0.833 1.000 0.400 0.200 

4 0.200 0.667 0.000 0.000 0.400 

5 0.600 0.333 0.375 0.500 1.000 

6 0.400 1.000 0.750 1.000 0.600 

7 0.800 0.500 0.125 0.700 0.200 

8 0.200 0.667 0.625 0.900 0.400 

9 0.000 0.167 0.625 0.300 0.000 

10 0.600 0.333 0.750 0.100 0.000 

11 1.000 0.833 0.375 0.800 0.600 

12 0.400 0.000 0.125 0.200 0.400 

13 0.800 0.667 0.500 0.700 0.200 

14 0.200 0.167 0.875 0.900 0.400 

15 0.000 0.000 0.250 0.700 0.200 
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Abstract. We conduct performance analysis for national and interna-
tional kidney exchange programmes (KEPs) with the simulator devel-
oped in the ENCKEP COST Action. Most of the large European coun-
tries operate kidney exchange programmes where kidney patients can
exchange their willing but immunologically incompatible donors with
each other. The ENCKEP simulator can mimic the operation of the Eu-
ropean national and international KEPs by generating realistic datasets
for a given time period, and then conducting regular matching runs by
using the hierarchic optimisation criteria of the countries considered. In
this new study we conduct large number of simulations to obtain robust
findings on the performance of specific national programmes and on the
possible benefits of international collaborations.

Keywords: kidney exchanges · computer simulation · hierarchical op-
timisation

1 Introduction

Kidney exchange programmes (KEPs) have been established in many countries
to facilitate the exchanges of the donors. The European practices have been
surveyed in [1] and the optimisation aspects of the European KEPs were de-
scribed in [2], as the results of a COST Action called European Network for
Collaboration on Kidney Exchange Programmes (ENCKEP).

International kidney exchanges have been conducted first in between Vienna
and Prague in 2016 [3], followed by the collaboration of Spain, Portugal and
Italy. The recent Handbook [4] of Working Group 3 and 4 of the ENCKEP
COST Action has studied the practice of international KEPs, the modelling
possibilities including results from [5] and [6], and the description of a simulation
and evaluation tool developed by these working groups.

2 Computer simulations

Following up on our previous results presented in [8], we conducted multiple
computer simulations for the three largest KEPs currently operating in Europe,
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namely the national programmes of the UK, Netherlands and Spain. We simu-
lated 5 years in all cases, where the time interval between matching runs were 3
months, since this is the setting used in real practice. In order to obtain robust
results, we conducted 1000 simulations per collaboration policy, and we used
different input datasets for each of these runs. We present our results in this
paper, however due to lack of space, the simulation results for the Netherlands
is not included.

We used the ENCKEP Simulator tool [4] for conducting the simulations. For
a survey on KEP simulators, see [7].

3 UK

In the national KEP of the UK, matching runs are conducted every 3 months,
and the upper length limit both for exchange cycles and chains is 3. We used
the same settings, and allowed internal recourse in the simulations in order to
search for embedded cycles to implement in case of arc or node failure. As for
the optimisation policy, we used the same set of criteria that we described in [8]
(see [4] for further details about the scoring functions).

The frequency distribution of final levels in the 20.000 optimisation runs
conducted is depicted on Fig. 1.

Fig. 1. Final level of optimisation runs for UK

Level 0 means that there were no possible cycles found in that optimisation
run, and the 5th level represents the weighted optimisation level. As we can
see on the figure, the occurrence of level 0 is relatively high, which might be
because of the fact that we had to reduce the size of pools to be generated, since
the optimisation process took too long to practically conduct 1000 simulations
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using the original pool sizes. However, recently we have managed to speed up
this optimisation process, so further research can be conducted without these
limitations.

Most importantly, we can see on Fig. 1 that the weighted optimisation level
was reached in the majority of the cases, so the criteria defined for this level very
often had an important effect on the solution selected for implementation. Since
there are multiple criteria used on the weighted level of optimisation in the UK
as well, checking which one had the biggest impact can be useful to precisely
adjust the scoring functions. These results are shown on Fig. 2.

Fig. 2. Weighted criteria impact in UK

We measured these scores only if the weighted optimisation level was reached,
because this is when the weighted criteria have an effect on the selection of the
solution. The criterion for prioritising based on waiting time produced most
of the scores given in weighted optimisation runs, while much less scores were
given for prioritising highly sensitised recipients. Minimising the donor-donor
age differences seems to be the final discriminator with small amounts of scores
given in case of the other weighted criteria resulting in approximately the same
amount of scores for two or more solutions, as it was intended for real practice.

4 Spain

The national KEP operating in Spain sets the limit for maximum length of
exchange cycles to 3. They do not use length constraint on chains, but since
we have to set an upper bound for this in the simulations (which should be
reasonable to limit run-time), we used 4. We also allowed internal recourse in
the simulations. The same set of optimisation criteria was used here as in [8].
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To mimic real practice, we tried to set realistic relative pool sizes, which
meant that the Spanish pool was set to be the smallest and the pool of the UK
to be the largest. Since this pool size used for the UK was already limited, the
initial pool of the Spanish KEP was often generated to be very small. As we can
see on Fig. 3, this resulted in an increased number of optimisation runs where
there were no possible exchange cycles in the virtual compatibility graph, and
in case there were some, then the first criteria has already made the solution
unique.

Fig. 3. Final level of optimisation runs for ES

In those cases, where the optimisation reached the weighted level, the impact
of the different optimisation criteria used is depicted on Fig. 4 for the Spanish
KEP.

The priority for the same blood-group transplants produced the highest
scores in weighted optimisation runs, while the other 3 criteria resulted in way
less scores in comparison. Also, in contrast to the UK, the scores given based on
the waiting time of recipients in KEP produced the least amount of scores here.

5 International collaboration

The ENCKEP Simulator tool can simulate three different collaboration policies
as follows (see [4] for further details):

– Individual policy: Each participating pool will have its own matching run
separately.

– Consecutive policy: First, in each matching run, there will be an optimisation
run for each pool separately. Then, the pairs who are still in the separate
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Fig. 4. Weighted criteria impact in ES

pools after this, will be merged into one joint pool, and there will be an
optimisation run for this pool as well.

– Joint policy: All the participating pools will be merged into one pool imme-
diately, and this merged pool will be used in the matching runs.

The simulator software allows us to set a customised optimisation policy for
each pool in the simulations just as in real practice, so we used this feature with
the corresponding settings described in [8]. Also, for the merged pools, we used
the upper cycle and chain length limits and the optimisation policy that is used
in the UK. The effectiveness of different collaboration policies studied is depicted
on Fig. 5.

The results show that for each KEP, the joint collaboration policy was the
most beneficial in the simulations regarding the number of transplants con-
ducted. In case of the Netherlands, the benefit of the joint policy and the dif-
ference between the collaboration policies in general seems to be small, and the
reason behind this is probably that the upper length limit for cycles used in the
Netherlands is 4, while in merged pools we used the policy of the UK, which
meant that these upper length limits were reduced to 3 in case of the KEP of
the Netherlands.

In our previous study [8], we used one simulation instance to obtain a simi-
lar performance analysis, and we concluded that the joint policy was the most
effective way of collaboration between KEPs. In this paper, we presented that
robust results based on large scale performance analysis using 1000 simulation
instances per collaboration policy led to the same conclusion. In further research,
we would like to analyse the effectiveness of these collaboration and optimisation
policies from the perspective of transplant quality as well, using quality indices
[1].
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Fig. 5. Effectiveness of different collaboration policies
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Abstract. In the present work, solution methods are presented which provide 

solutions to different classes of assembly line balancing problems. Line balancing 

consists of the sequencing of production tasks on one or more assembly lines, 

and assigning them to working personnel, usually to maximize productivity or 

minimize costs. This is a complex combinatorial problem. However, in certain 

circumstances, dynamic programming can be used to provide globally optimal 

solutions in polynomial time, for example, when task order is fixed. Two 

investigated scenarios are presented in this work: when the given production lines 

and workforce must be distributed among different products, and when 

workstations consisting of multiple workers can execute tasks in parallel. The 

effectiveness of the proposed dynamic programming algorithms is demonstrated 

on a few examples. 

Keywords: Optimization, Dynamic Programming, Line Balancing. 

1 Introduction 

Assembly or production line balancing seeks to evenly distribute workload among 

workforce at an assembly line to maximize productivity. There are many different 

formulations for this generally NP-hard optimization problem [1]. Approaches depend 

on different assembly line types, product variety and assembly line synchronization [2]. 

In simpler cases, there is a straight assembly line with a fixed pace and data are 

deterministic [3]. Mathematical programming approaches had also been proposed for 

line balancing [4]. 

The present work is motivated by Bartos and Bertók [5] who developed a P-Graph 

based model [6], resulting in a 20-25% productivity improvement in a real-world line 

balancing problem instance. A core assumption in this work was that the order of tasks 

was decided a priori. Under this assumption, even faster and more robust solution 

techniques become possible, and a wider range of line balancing problems can be 

covered. Our primary goal was to explore extensions of the problem formulation and 

design algorithmic approaches to achieve better results and a more generally applicable 

solution technique. Since our previous work [7], algorithms for more general problems 

using dynamic programming had been developed and tested. 
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2 Line balancing problems and solutions methods 

2.1 Single line case 

The first investigated line balancing problem is the following. Given a product with 𝑁 

tasks to be performed in a fixed order and 𝐾 workers. Assign each task to a single 

worker such that each worker has consecutive tasks assigned and the cycle time is 

minimal. The cycle time is the highest of the workers’ working times. The working 

time of a worker is the time needed to execute all tasks assigned to that worker on a 

single product item. The cycle time is the average time elapsed between product items 

being ready, which defines the overall production rate. 

𝑍𝑜𝑝𝑡 = min
0=𝑥1≤𝑥2≤⋯≤𝑥𝑘+1=𝑁

( max
1≤𝑘≤𝐾

𝑇𝑘,𝑥𝑘,𝑥𝑘+1
) (1) 

Equation (1) displays the optimal cycle time, where 𝑥𝑘 is the first task the 𝑘th worker

performs, and 𝑥𝑘+1 − 1 is the last one. Parameter 𝑇𝑘,𝑥𝑘,𝑥𝑘+1
 denotes the time worker 𝑘

spends by performing tasks from 𝑥𝑘 to 𝑥𝑘+1 − 1. Note that tasks are indexed from 0 to

𝑁 − 1, while workers are indexed from 1 to 𝐾. 

A solution algorithm for this problem with dynamic programming relies on the 

definition of subproblems 𝐹𝑘,𝑛, which denotes the optimal cycle time if only the first 𝑘
workers and the first 𝑛  tasks are considered. We can set 𝐹𝑘,0 = 0  and 𝐹0,𝑛 = ∞ ,

otherwise the recursive formula shown in Equation (2) holds. 

𝐹𝑘,𝑛 = min
0≤𝑥𝑘≤𝑛

(max{𝐹𝑘−1,𝑥𝑘
, 𝑇𝑘,𝑥𝑘,𝑛 })    ∀ 1 ≤ 𝑘, 𝑛 (2) 

In the formula, 𝑥𝑘 is the choice made in subproblem 𝐹𝑘,𝑛 for the 𝑘th worker. Then

𝐹𝑘,𝑛  from 1 ≤ 𝑘 ≤ 𝐾  and 1 ≤ 𝑛 ≤ 𝑁  can be recursively calculated. Although only

𝐹𝐾,𝑁 is the final answer, 𝐹𝑘,𝑁 is obtained for all 1 ≤ 𝑘 ≤ 𝐾 in the procedure. In other

words, the answers for all different worker counts up to 𝐾 are obtained, which is a 

practically useful property of this solution technique. 

If for all 𝐹𝑘,𝑛  the optimal choice 𝑥𝑘 = 𝑥𝑘,𝑛
𝑜𝑝𝑡

 is recorded, then the optimal task 

assignment can be reproduced from the table of 𝑥𝑘,𝑛
𝑜𝑝𝑡

values in 𝑂(𝑘) time for any 𝐹𝑘,𝑛.

2.2 Implementation considerations 

Even the straightforward calculation of all 𝐹𝑘,𝑛 can be done in 𝑂(𝑁2𝐾) time which

is fast enough for a single problem. However, if this optimization step is to be used 

multiple times, in an optimization procedure of a wider scope, any improvement can be 

helpful. The following was used in our implementation. 

If 𝑇𝑘,𝑎,𝑏  is increasing as interval [𝑎, 𝑏[ expands, that is, max{𝑇𝑘,𝑎+1,𝑏, 𝑇𝑘,𝑎,𝑏−1} ≤

𝑇𝑘,𝑎,𝑏, then 𝐹𝑘−1,𝑥𝑘
 is increasing and 𝑇𝑘,𝑥𝑘,𝑛 is decreasing with 𝑥𝑘 increasing. Then it

can be proven that 𝑥𝑘,𝑛+1
𝑜𝑝𝑡

≥ 𝑥𝑘,𝑛
𝑜𝑝𝑡

, and moreover, 𝑥𝑘,𝑛+1
𝑜𝑝𝑡

∈ {𝑥 − 1, 𝑥}, where 𝑥 is the 

smallest index 𝑥 ≥ 𝑥𝑘,𝑛
𝑜𝑝𝑡

for which 𝑇𝑘,𝑥,𝑛+1 ≤ 𝐹𝑘−1,𝑥. This gives the possibility to find

all 𝑥𝑘,𝑛
𝑜𝑝𝑡

 for a given 𝑘 in 𝑂(𝑁) time, reducing the overall complexity to 𝑂(𝑁𝐾). 
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The condition of 𝑇𝑘,𝑎,𝑏 being increasing in this desired way can be guaranteed based

on problem assumptions. For example, a simple definition of 𝑇𝑘,𝑎,𝑏  is the sum of

estimated time requirements 𝑐𝑖 for all tasks 𝑖 as shown in Equation (3).

𝑇𝑘,𝑎,𝑏 = ∑ 𝑐𝑖

𝑏−1

𝑖=𝑎
  ∀ 𝑘, 𝑎, 𝑏 (3) 

Based on this starting definition of 𝑇𝑘,𝑎,𝑏 , additional problem formulations were 

implemented. Some of these are guaranteed to preserve the condition on 𝑇𝑘,𝑎,𝑏 , for

example penalties for performing particular consecutive tasks or too many tasks with 

the same worker, or not identical workers. Some may break the condition, for example 

penalty for assigning particular consecutive tasks to two different workers. 

Note that if workers are not assumed to be identical in the modeling point of view, 

then this dynamic programming approach can only be maintained if the order of 

workers is also assumed to be fixed. 

3 Multiple products and lines 

A more general problem was formulated and solved with dynamic programming. Here 

not only a single line is considered, but the total revenue from producing many different 

products on many lines is maximized. Given the number 𝐿 of accessible assembly lines, 

and 𝑃 different products, each with a revenue 𝑟𝑝, maximize total revenue generated per

unit time. Let 𝑀𝑝,𝑙,𝑘 denote the optimum assuming that only the first 𝑝 products, and a

total of the first 𝑙 lines and 𝑘 workers are available. The recursive formula shown in 

Equation (4) holds. The decisions 𝑤  and 𝑢  correspond to the number of lines and 

workers dedicated to the 𝑝th product. 

𝑀𝑝,𝑙,𝑘 = max
𝑤,𝑢: 𝑤=𝑢=0 ∨
1≤𝑤≤𝑙,1≤𝑢≤𝑘

(𝑀𝑝−1,𝑙−𝑤,𝑘−𝑢 + 𝑟𝑝 ⋅ 𝑈𝑝,𝑤,𝑢)   ∀ 𝑝, 𝑙, 𝑘 
(4) 

Here, 𝑈𝑝,𝑙,𝑘 denotes the maximum production rate if exactly 𝑘 workers are assigned

on 𝑙 different lines to produce the 𝑝th product. This value can also be obtained by its 

own recursive formula for each product individually, as shown in Equation (5). The 

decision 𝑢 corresponds to the number of workers assigned to the 𝑙th line. 

𝑈𝑝,𝑙,𝑘 = max
1≤𝑢≤𝑘

(𝑈𝑝,𝑙−1,𝑘−𝑢 +
1

𝐹𝑢,𝑁𝑝

𝑝 )   ∀ 𝑝, 𝑙, 𝑘 (5) 

Here 𝐹𝑢,𝑁𝑝

𝑝
 is the optimal cycle time for product 𝑝 and exactly 𝑢 workers. These 

values are directly obtained from the single line problem for all products. 

A straightforward implementation requires 𝑂(𝑃𝐿2𝐾2 + 𝑃𝑁2𝐾)  time to evaluate 

𝑀𝑃,𝐿,𝐾 and all subproblems below, which is still low enough for practical examples.

Note that in this problem formulation, assembly lines and workers were assumed to be 

identical. Considering one different type of worker would add a new dimension to the 

subproblem space. 

In our implementation, additional constraints were considered in the problem 

formulation, including limits on worker and line counts, and even lower bounds for 
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production rate of a single product. The latter allows to formulate a composition of a 

cost minimization and a throughput maximization problem. In general, any constraint 

prohibiting a particular subproblem, that can be unambiguously evaluated for a 

particular (𝑤, 𝑢) choice and its result 𝑀𝑝,𝑙,𝑘  in Equation (4), or an 𝑢 choice and its

result 𝑈𝑝,𝑙,𝑘  in Equation (4), could be added to the problem while maintaining the

structure of the aforementioned dynamic programming approach. 

4 Parallel execution of tasks 

In the previous formulations, workstations – which are responsible for a sequence of 

tasks – consisted of a single worker. In the following formulation, this assumption is 

relaxed, and multiple workers can be present on a single workstation, which allows an 

even distribution of working times of the task sequence among the workers involved. 

This can be advantageous in practice, for example if both sides of the assembly line are 

occupied, or the line simply transfers multiple product items to multiple workers at the 

same time. 

The single line problem with possible parallel executions was considered as the 

problem formulation. The objective is cycle time minimization as before. 

The average working time 𝑌𝑠,𝑎,𝑏 for product items in a workstation with 𝑠 identical

workers performing tasks 𝑎 to 𝑏 − 1 is shown in Equation (6), based on 𝑌1,𝑎,𝑏. Note

that 𝑌𝑠,𝑎,𝑏 is different from 𝑇𝑘,𝑎,𝑏, because 𝑢 is a single worker with possibly special

attributes, but 𝑠 is the number of identical workers. 

𝑌𝑠,𝑎,𝑏 =  
𝑌1,𝑎,𝑏

𝑠
+ 𝐵(𝑠)   ∀ 𝑠, 𝑎, 𝑏 (6) 

Here 𝐵(𝑠) is a penalty factor which should be non-zero. 𝐵(𝑠) = 0 would lead to an 

extreme case where there is a single workstation with all workers. For this reason, our 

implementation supports arbitrary values for 𝐵(𝑠)  for which 𝐵(𝑠 + 1) ≥ 𝐵(𝑠)  and 

𝐵(1) = 0. Note that 𝐵(𝑠) = ∞ effectively sets an upper limit on the number of workers 

on a single workstation. 

The subproblems are the same as in the original single line case, but a choice is added 

on the number of parallel workers 𝑠 for the last station, see Equation (7). 

𝐹𝑘,𝑛 = min
0≤𝑥𝑘≤𝑛
1≤𝑠≤𝑘

(max{𝐹𝑘−𝑠,𝑥𝑘
, 𝑌𝑠,𝑥𝑘,𝑛})  ∀ 𝑘, 𝑛

(7) 

The complexity of evaluating 𝐹𝐾,𝑁 with a straightforward calculation is 𝑂(𝑁2𝐾𝑆),

where 𝑆 ≤ 𝐾 is an upper bound for worker count on a single workstation. Again, if 

max{𝑌1,𝑎+1,𝑏, 𝑌1,𝑎,𝑏−1} ≤ 𝑌1,𝑎,𝑏 holds, then this can be reduced to 𝑂(𝑁𝐾𝑆).

5 Computational results 

The problem formulations considering multiple products could be combined with the 

extension of parallel executions allowed on a single line, although we tested these two 

problem formulations individually. Implementations were C++ programs requiring 
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only the standard libraries. Some of the tests are presented, executed on a Lenovo 

E5470 Laptop with Intel i7-6600 CPU and 16 GB RAM, on Ubuntu 20.04.4 LTS. 

Table (1) shows some runtimes with various values of task count (𝑁), available line 

count (𝐿), worker count (𝐾) and product count (𝑃). The rest of the parameters were 

randomly generated. It seems that for these instances, the algorithm is most sensitive to 

the increasing of 𝐿 and 𝐾 and less to 𝑁 and 𝑃. Inspecting the actual assignments shows 

that in most cases, one or two products are used. The reason behind this is that the 

product with the highest revenue to time ratio tends to be dominating, and only 

remainder workers are assigned to other options. 

Table 1. Running times for the formulation with multiple products and lines. 

N L K P Runtime (ms) 

100 5 20 10 0.38 

100 5 40 10 0.74 

100 5 100 10 2.62 

100 5 200 10 14.27 

100 5 500 10 41.16 

300 5 500 10 42.50 

100 15 500 10 194.60 

100 5 1500 10 206.81 

100 5 500 30 77.92 

Table 2. Optimal cycle times and runtimes for the formulation with parallel execution allowed. 

N K pavg Objective Runtime (ms) 

20 15 0.5 8.99 0.34 

50 15 0.5 22.15 0.94 

100 15 0.5 39.60 2.99 

200 15 0.5 77.67 13.09 

500 15 0.5 186.39 66.98 

500 15 0 184.97 66.64 

500 15 1.5 187.75 66.75 

500 15 ∞ 189.40 64.46 

1000 15 0.5 366.40 254.95 

500 30 0.5 93.80 78.77 

500 60 0.5 47.90 86.81 

500 200 0.5 15.39 297.41 

Table (2) shows optimal cycle times and runtimes for randomly generated problem 

instances with various values of task count (𝑁), worker count (𝐾), and average value 

of 𝐵(𝑠 + 1) − 𝐵(𝑠)  denoted as 𝑝𝑎𝑣𝑔 , where 𝐵(𝑠)  is the penalty factor for parallel
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workers. Among many findings, we can observe that for a large 𝑁, the objective is less 

sensitive to 𝑝𝑎𝑣𝑔. The effect of 𝑁 on runtime seems to be greater than of 𝐾, which is

counter-intuitive and is subject to future research. 

Both algorithms are very fast. Note that in the original real-world instances, there 

were only dozens of tasks and workers. A favourable property of these dynamic 

programming approaches compared to mathematical programming and P-Graph 

implementations is the strong guarantees for complexity. Although a potential 

disadvantage is difficulty to extend with additional constraints. 

6 Conclusions 

Algorithms for various line balancing optimization problem formulations were 

developed, particularly for revenue optimization with multiple products and allowing 

parallel execution on workstations. The approaches use dynamic programming, and 

guarantee robust and globally optimal solutions. Our tests have shown that these 

algorithms are very fast to be used not only for problem instances, but as part of possible 

optimization procedures in the future, targeting a wider scope. 

A possible direction of future research is the investigation of several worker types 

and flexible task orders. These make the problem much more difficult. The algorithms 

shown can be of good use for this purpose by providing heuristics due to their speed. 

Acknowledgement 

This work has been implemented by the TKP2020-NKA-10 project with the support 

provided by the Ministry for Innovation and Technology of Hungary from the National 

Research, Development and Innovation Fund, financed under the 2020 Thematic 

Excellence Programme funding scheme. 

References 

1. Sivasankaran, P., Shahabudeen. P.: Literature review of assembly line balancing problems. 

Int J Adv Manuf Technol 73, 1665–1694 (2014). 

2. Kumar, N., Mahto, D.: Assembly line balancing: a review of developments and trends in 

approach to industrial application. Glob J Res Eng 13 (2013). 

3. Becker, C., and Scholl., A.: A survey on problems and methods in generalized assembly line 

balancing. Eur J Oper Res 168, 694–715 (2006). 

4. Deckro, R. F., Rangachari., S.: A goal approach to assembly line balancing. Comput Chem 

Eng 17 509–521 (1990). 

5. Bartos, A., Bertok, B.: Production line balancing by P-graphs. Optim Eng (2019).

6. Friedler, F., Tarjan, K., Huang, Y. W., Fan, L. T.: Graph-Theoretic Approach to Process 

Synthesis: Axioms and Theorems. Chem Eng Sci 47, 1973–1988 (1992). 

7. Eles, A., Heckl, I.: Solving and extended line balancing optimization problem using dynamic 

programming. In: Vassanyi, I. (ed.) Proceedings of the Pannonian Conference on Advances

in Information Technology (PCIT’2020), pp. 31–37. (2020). 

35

VOCAL 2022: Short Papers



Input design - from convex to non-convex
problems and vice versa
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fication and control of linear stochastic systems, the design of optimal
input. This leads to a convex problem in Rp×p, however, the generation
of an input signal may lead to a non-convex problem. We discuss various
approaches of convexification, and point out issues for further research.
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1 Technical setup

We consider discrete time, single input single output linear stochastic control
system with input u external noise e and output y. The identification of the
dynamics under frequency-weighted energy constraints on the input is of funda-
mental importance in most industrial control systems, see [1]. Optimal design
of the input in order to minimize losses due to uncertainty is a fundamental
theoretical problem, an a key component in practical adaptive input design, [8],
[9]. More recently the problem of input design has become central in machine
learning, see [2].

Consider a discrete time, single input single output linear stochastic control
system with input u, external noise e and output y, defined in −∞ < n < +∞

y = Hu u+He e. (1)

Here Hu and He are rational functions of the backward shift operator q−1. The
associated transfer functions obtained when replacing q−1 by e−iω, are assumed
to belong to a parametric family of rational transfer functions of fixed degrees,
say Hu(θ, e−iω) and He(θ, e−iω). The true parameter will be denoted by θ∗. The
input process (un) and the noise process (en) are jointly wide sense stationary
(w.s.st.) stochastic processes. Moreover, (en) is a martingale difference process
with constant conditional variance. Finally we assume that u is orthogonal to e,
written as u⊥e. It follows that e = (en) is a w.s.st. orthogonal process.
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The spectral distribution measure of u will be denoted by dΦu(ω), with −π ≤
ω ≤ π. It is a finite measure, and for a real-valued process u it is symmetric w.r.t.
0, i.e. dΦu(ω) = dΦu(−ω), defining the set of Su. Under standard conditions,
see [3] or [1], the off-line prediction error (PE) estimator of θ∗ is known to have

the asymptotic covariance matrix Σθθ = σ2M−1 = σ2 (Mu +Me)
−1

, where

Mu =

∫ +π

−π
Du(e−iω)Du>(eiω) dΦu(ω) (2)

Me =

∫ +π

−π
De(e−iω)De>(eiω) dω · σ2, (3)

and Du(e−iω) and De(e−iω) are Cp-valued rational function explicitly known up
to the unknown true parameter θ∗ :

Du(e−iω) = −He(θ∗, e−iω)−1Hu
θ (θ∗, e−iω) (4)

De(e−iω) = −He(θ∗, e−iω)−1He
θ (θ∗, e−iω). (5)

The set of feasible matrices Mu, denoted by Mu, is defined by taking a pre-
selected, bounded, continuous weight-function w(eiω) ≥ 0 and imposing

∫ +π

−π
w(ω) dΦu(ω) ≤ K. (6)

It is easily seen that Mu is a compact, convex set in Rp×p.
The quality of the input design is quantified via a performance index, penal-

izing uncertainty. Assuming that the performance index is sufficiently smooth
in θ, and its Hessian at θ = θ∗, denoted by P, is positive definite, the primary
input design problem can be formulated as

min
Mu∈Mu

tr
(
M−1 P

)
(7)

subject to M = Mu +Me ∈ Rp×p+ . (8)

Now, tr
(
M−1 P

)
is a strictly convex function for M ∈ Rp×p+ , and thus the opti-

mization problem above has a unique solution Mu∗. The question remains how
to construct a spectral distribution measure dΦu that generates Mu∗ via (2).

2 Input design - the associated moment problem

Thus we have a generalized moment problem at hand. A classic approach, due to
engineering insights, is that for any feasible Mu a spectral measure concentrated
to a finite number of frequencies can be constructed, see [4]. Indeed, for

Mu = 2

∫ +π

0

<
(
Du(e−iω)Du>(eiω)

)
dΦu(ω), (9)
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the real, symmetric matrices <
(
Du(e−iω)Du>(eiω)

)
span a vector-space of di-

mension at most s := p(p+ 1)/2. Hence we can select at most s frequencies and
corresponding weights, 0 ≤ ω1 < . . . < ωs ≤ π and Φ̄u(ωk) so that

Mu = 2

s∑

k=1

<
(
Du(e−iωk)Du>(eiωk)

)
Φ̄u(ωk). (10)

For any k a real-valued w.s.st. process with spectral measure concentrated at
±ωk, with energy 1 at both, is obtained by setting

uk,n := 2 cos(ϕk + ωkn), (11)

where the random phase ϕk is uniform in [−π, π]. Choosing a set of independent
random phases ϕk and energy levels σ2

k associated with ±ωk, the process

un :=
s∑

k=1

σkuk,n =
s∑

k=1

2σk cos(ϕk + ωkn) (12)

is a w.s.st. process with the discrete spectral measure assigning the weight σ2
k to

each frequency ±ωk. The signal u = (un) is called a multi-sine. Letting αk := σ2
k

the covariance matrix Mu will be linear in the αk-s. Unfortunately, the cost
function tr

(
M−1 P

)
is non-convex in ωk, k = 1, . . . , s.

However, an equivalent convex problem can be formulated by letting dΦu(ω)
vary over the set of discrete symmetric spectral measures concentrated at any
finite number of pairs of frequencies ±ωk. This (convex) set will be denoted by
Sd. Let t be arbitrary, and for a set of frequencies ωk and associated energy
levels αk, with k = 1, . . . , t, consider the matrix

Mu = 2
t∑

k=1

αk <
(
Du(e−iωk)Du>(eiωk)

)
. (13)

Then the optimization problem (7) becomes convex over the space of discrete
measures Sd. However its solution is a challenging task.

A heuristic approach to find a sub-optimal solution is to take a large t and
a dense mesh of frequencies, and replacing the energy constraint by a linear
penalty term in the objective function in the hope of enforcing sparsity of the
solution, echoing the ideas of Lasso estimates, see [5], [6], [7]. To simplify the
notation let dk = Du(e−iωk), and let γ > 0 be a scaling parameter of the penalty
term. Then a sub-optimal input design is obtained via the minimization problem

min
α

tr



(

2<
t∑

k=1

αk dkd
>
k +Me

)−1
P


+ γ

t∑

k=1

αkw(ωk),

subject to αk ≥ 0. It can be shown that the above convex problem has a unique
solution such that the number of non-zero coefficients is at most s = p(p+ 1)/2
for wide class of weight functions, such as band-pass filters. Experimental results
regarding the above method with real data will be presented.
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3 An analytic approach

An nice analytic approach for the characterization input spectra dΦu(ω) solving
the generalized momentum problem, allowing vector-valued inputs, was given in
[10] in the special case when the filter Du(e−iω) is realized by a linear stochastic
system xn+1 = Axn +Bun, i.e.

Du(e−iω) = (eiωI −A)−1B. (14)

The key technical tool is the extension of what is called half-spectra, from the
unit circle λ = e−iω, to to the open unit disc of the complex plane. Let M
denote the set of p× p matrix-valued Hermitian non-negative finite measures on
[−π, π]. For any dΦu := µ ∈M consider the auto-covariance matrices

E[u(m+ n)u>(m)] =: R(n) =

∫ π

−π
einω dµ(ω). (15)

It is well-known and easily seen that the sequence R(n) is positive semi-definite,
and if it is absolutely summable then dµ(ω) is absolutely continuous, and

dµ(ω)/dω =
1

2π

∞∑

n=−∞
R(n)e−inω ≥ 0. (16)

The left hand side is the spectral density of u. It follows that the half spectrum

F (e−iω) :=
1

2
R(0) +

∞∑

n=1

R(n)e−inω (17)

is positive real, i.e. <F (eiω) is positive semidefinit. Substituting R(n) from (15),
and replacing ω in (17) by ω′, we get

F (e−iω
′
) =

1

2π

∫ π

−π

1 + ei(−ω
′+ω)

1− ei(−ω′+ω)
dµ(ω). (18)

Replacing e−iω
′

by λ and letting λ vary in the open unit disc D = {λ : |λ| < 1}
of the complex plane we can define the function

F (λ) =
1

2π

∫ π

−π

1 + λeiω

1− λeiω dµ(ω). (19)

The function F (λ) can be shown to be analytic and positive real for all λ ∈ D.
The set of such functions will be denoted by F . Thus we established a one-to-one
correspondence between the set of measures M and the elements of F (modulo
a constant additive skew-Hermitian term) irrespective of the nature of dµ(ω).
In the scalar case for a multi-sine of the form (12) we have

F (λ) =
1

2π

s∑

k=−s
σ2
k

1 + λeiωk

1− λeiωk
. (20)
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To summarize the tools developed in [10] within the notations of the paper
consider (14), and set G(e−iω) := Du(e−iω). Substituting e−iω by λ we obtain

G(λ) = λ(I − λA)−1B. (21)

A beautiful algebraic result of [10] provides a characterization of the set of co-
variance matrices Σ := Mu that can be realized via (2):

Proposition 1. Assume that the pair (A,B) is controllable with A having its
eigenvalues in the open unit disc D. Then a symmetric, positive semi-definit
matrix Mu = Σ is the stationary state covariance matrix of the linear system
defined via (14) if and only if the matrix equation

Σ −AΣA> = BH +H>B> (22)

has a solution H.

Now, the set of measures yielding a given covariance matrix Σ can be char-
acterized via their transforms in F . First we note that is (A,B) is controllable,
then we can find a suitable linear state-space transformation such that

AA> +BB> = I. (23)

Let A,B normalized as above. Then the matrix [A, B] can be completed to a
an orthonormal matrix

U :=

(
A B
C D

)
. (24)

Let us fix such a C and D, and consider the transfer function

V (e−iω) = D + C(eiωI −A)−1B (25)

and its extension to D obtained by substituting λ = e−iω. It is well-known that
V (λ) is an all-pass or inner function: it is bounded analytic in the open unit
disc, and has unitary radial limits on the unit circle. For a simple proof see [10].

Proposition 2. Assume that (23) is satisfied. Then F (λ) ∈ F is a solution of
the generalized moment problem if and only if it can be written in the form

F (λ) = F0(λ) +Q(λ)V (λ), (26)

where F0(λ) = HG(λ) and Q(λ) is analytic in D.

Thus the set of solutions of the generalized moment problem is linearly
parametrized by a convex set of analytic functions Q(λ), subject to the con-
straint that <F (λ) ≥ 0. For fixed Σ the function Q(λ) is uniquely determined
by F (λ). The actual design parameter is the matrix H defining Σ implicitly
via (22) subject to Σ ≥ 0. The full exploitation of this results for solving the
original optimization problem (7) - (8), and its extension to transfer functions
of the form Du(e−iω) = C(eiωI −A)−1B is an attractive open problem.

Acknowledgement. László Gerencsér was supported by the Ministry of In-
novation and Technology NRDI Office (National Research, Development and
Innovation Office) within the framework of the Autonomous Systems National
Laboratory Program.

40

VOCAL 2022: Short Papers



References

1. H. Hjalmarsson, “System identification of complex and structured systems,” Euro-
pean Journal of Control, vol. 15, no. 3-4, pp. 275–310, 2009.

2. A. Wagenmaker and K. Jamieson, “Active learning for identification of linear dy-
namical systems,” in Conference on Learning Theory, pp. 3487–3582, PMLR, 2020.

3. L. Gerencsér, “On the martingale approximation of the estimation error of arma
parameters,” Systems & Control Letters, vol. 15, no. 5, pp. 417–423, 1990.

4. M. B. Zarrop, Optimal experiment design for dynamic system identification.
Springer, 1979.

5. R. Tibshirani, “Regression shrinkage and selection via the Lasso,” Journal of the
Royal Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288,
1996.

6. D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse overcom-
plete representations in the presence of noise,” IEEE Transactions on Information
Theory, vol. 52, no. 1, pp. 6–18, 2005.

7. J. A. Tropp, “Just relax: Convex programming methods for identifying sparse signals
in noise,” IEEE transactions on Information Theory, vol. 52, no. 3, pp. 1030–1051,
2006.

8. L. Gerencsér and H. Hjalmarsson, “Adaptive input design in system identification,”
in Proceedings of the 44th IEEE Conference on Decision and Control, pp. 4988–4993,
IEEE, 2005.

9. L. Gerencsér, H. Hjalmarsson, and L. Huang, “Adaptive input design for lti sys-
tems,” IEEE Transactions on Automatic Control, vol. 62, no. 5, pp. 2390–2405,
2016.

10. T. T. Georgiou, “The structure of state covariances and its relation to the power
spectrum of the input,” IEEE Transactions on Automatic Control, vol. 47, no. 7,
pp. 1056–1066, 2002.

41

VOCAL 2022: Short Papers



Testing re-optimisation strategies in international kidney 

exchange programmes by the ENCKEP simulator 

Lilla Matyasi1, Péter Biró2,3 

1 Budapest University of Technology and Economics, Budapest, Hungary 
2 Institute of Economics, KRTK, Budapest, Hungary 

3 Corvinus University of Budapest, Budapest, Hungary 
lilla.matyasi@gmail.com, peter.biro@krtk.hu 

Abstract. We tested re-optimisation strategies for international kidney exchange 

programmes using the simulator developed by the ENCKEP COST Action. 

Kidney exchange programmes (KEPs) are operating in most of the European 

countries to facilitate the exchange of kidney donors for the recipients with 

incompatible living donors. The optimal solutions for national and international 

KEPs are typically selected in every three months based on the compatibilities 

estimated on the individual immunological data. However, these estimations are 

not always accurate, and if a positive crossmatch is found in the laboratory 

crossmatch tests then the corresponding exchange cycle must be cancelled. 

Depending on the matching process, the coordinators may use different re-

optimisation strategies to repair the failed solutions. We examine the effects of 

using multiple rounds of re-optimisation with different optimisation strategies, 

such as fixing good cycles in the intermediate solutions or prioritising arcs with 

negative crossmatch tests in previous rounds. In the context of international KEPs 

we also consider the possibility of testing and prioritising internal arcs in the 

solutions. We measure the performance of these policies regarding the number 

of transplants and the number of compatibility tests conducted in the given time 

period. 

Keywords: kidney exchange programmes, integer programming, computer 

simulation. 

1. Introduction

Kidney exchange programmes (KEPs) help patients who have willing donors, who 

would donate their kidneys, however, the transplantation is not feasible due to 

immunological incompatibility. The goal of a KEP is to perform exchanges (or chains 

triggered by altruistic donors) between incompatible patient-donor pairs so that each 

patient can receive a compatible kidney. For example, if the recipient of the first pair 

can receive a kidney from the donor of the second pair, and the recipient of the second 

pair can receive a kidney from the donor of the first pair, a pairwise kidney exchange 

can be performed between them. 

The immunological compatibility of patients and donors in a KEP is checked by 

crossmatch tests. In the first round, virtual crossmatch tests are performed based on the 

immunological data of the donors and recipients. These are quick and inexpensive to 
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perform, however, these tests are not completely accurate. Based on the results of these 

virtual crossmatch tests, the transplants are selected by an optimisation algorithm. 

A laboratory crossmatch test must also be performed prior to the actual implantation, 

which is much more costly, time consuming, and if it gives a positive result, the 

transplant cycle in which the particular patient-donor pair was involved cannot be 

accomplished. One of the biggest challenges in connection with KEPs is how to deal 

with such failures. The related strategies are called recourse, failure-aware or re-

optimisation policies, and they have been extensively studied in the literature [4,5,7].   

KEPs have been set up in many countries over the past two decades. At least ten 

countries have operating programmes in Europe [1,2] the largest are located in the 

United Kingdom [9], in the Netherlands and in Spain. These programmes use 

significantly different methods and optimality criteria to find the optimal solution [2]. 

The differences are usually due to legal constraints or a different structure of 

organisations that coordinate kidney exchanges, and to the fact that it is not entirely 

clear what solutions do the experts consider optimal.  

Multi-country collaborations have also been established in several region, in 

between Vienna and Prague since 2016 [3], and in Spain, Portugal and Italy since 2018 

[11], and for Sweden and Denmark by Scandiatransplant from 2019. International 

cooperation offers many new opportunities, but also new problems to solve [10]. 

For our research, we used and further developed the kidney exchange simulator of 

the ENCKEP (European Network for Collaboration on Kidney Exchange Programmes) 

COST Action [6,12]. This simulator can take real historical or generated instances of 

national or international KEPs as input and conduct the match runs for a given time 

period under various collaboration policies and optimisation criteria. In this paper we 

present our results on testing different re-optimisation strategies for national and 

international KEPs on ten generated instances for each simulation. 

2. Re-optimalisation

In the set of solutions selected on the basis of virtual crossmatch tests, errors may be 

revealed after laboratory crossmatch tests. When a failed cycle or chain is detected, we 

can deal with the problem in different ways, that in general we call as re-optimisation. 

A traditional way of fixing errors is called recourse, when we use only the internal 

arcs of a failed cycle to accomplish at least some of the transplantations, if possible. 

This strategy is used in the UK, where only one round of laboratory testing takes places, 

since the shipment in between the HLA-labs is time consuming, so the internal arcs are 

also tested together with the arcs selected for transplants. This feature was already 

implemented in the ENCKEP simulator. Our simulations showed that an improvement 

of 2% can be achieved in the number of transplants in the period of five years.  

To consider more sophisticated recourse strategies, we implemented new features in 

the ENCKEP simulator. The most important is the possibility of re-optimisation, that 

is to find a new optimal solution after some failure occurs. We simulated various re-

optimisation policies for national programmes by using the UK optimisation rules and 

for international KEPs by using the pools and rules of the UK, Netherlands and Spain. 
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2.1. Re-optimisation for one pool 

In the first case we ran simulations from one up to five optimisation rounds, which 

is a general practice in the Netherlands, where multiple laboratory test runs can take 

place as the blood samples are stored in one central HLA-lab. In each round the 

simulator finds the best possible solution based on the result of the previous rounds. By 

the end of the fifth round in all cases the algorithm found the best possible solution. 

Fig. 1. The effect of conducting multiple re-optimisation rounds on the number of transplants 

and cross match tests.  

We implemented and tested two new re-optimisation features for national KEPs, that 

we just summarise here due to lack of space. The first is the possibility of fixing the 

good cycles and chains in the intermediate solutions. This is a practice used in Spain, 

where the correct cycles and chains are kept after the first laboratory tests, and in the 

second re-optimisation only some additional cycles and chains are selected for the rest 

of the pool. When compared with the previous full (Dutch) re-optimisation policy this 

strategy resulted slightly less (~1%) transplants, but much less (~15%) laboratory 

crossmatch tests when conducting four re-optimisation rounds in each match run over 

the five years period.  

The other possible improvement idea that we implemented and tested with the 

simulator is to track the results of the laboratory crossmatch rounds, since if one arc 

was found to be good in one round then one can assume that this transplant will remain 

possible in the future as well. In the simulations we added the maximisation of the 

number of good arcs right after the first objective of maximising the number of 

transplants. As a result, the number of transplants did not change significantly, but the 

number of crossmatch tests decreased slightly, by 2%. So, we found that this feature 

had no significant effect overall for the setting used.  
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2.2. Re-optimisation for multiple pools 

When testing the effect of re-optimisation for multiple pools, we can think about 

possible testing and re-optimisation strategies for international KEPs. However, our 

findings can also be interesting for a national KEP that has multiple HLA-labs (e.g. UK 

and Spain), where the internal arcs correspond to transplant possibilities belonging to 

the same HLA-labs, and the external arcs correspond to transplant possibilities in 

between donors and recipients belonging to different HLA-labs. We may assume that 

the internal arcs (that belong to the same country or HLA-lab) can be tested in the 

laboratories quicker and cheaper, whilst the external transplants are more time 

consuming and expensive to get lab-tested due to the shipments of blood samples. 

As the first feature we implemented and tested the possibility of conducting 

laboratory testing for separate pools. In order t to be able to simulate any testing strategy 

with the simulator, we made it possible to specify for which pools the software should 

test the solution in between the re-optimisation rounds. Intuitively, testing the internal 

arcs for pool after pool may be beneficial compared to testing these arcs together, since 

any failure is repaired immediately with re-optimisation.   

An example for the testing and re-optimisation order: 

"optimization_rounds":[["NL"],["UK","NL"], ["UK"], ["NL"], ["general"]] 

In this example there are five re-optimisation rounds, in the first round only the 

internal arcs of the Dutch program will be tested, in the second the internal arcs of the 

United Kingdom and the Netherlands, while in the last round all of them will be tested. 

Fig. 2. The effect of the order of re-optimisation rounds on the number of transplants 

In the results we can see that allowing one additional round of testing of internal arcs 

improved the number of transplants by more than 3%, however, we see no significant 

difference if these internal tests are conducted sequentially in each country. 
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In order to make international KEPs as successful as possible, it may be beneficial 

to minimise the number of international crossmatch-tests. We can do this by giving 

preference to the internal arcs, by maximising their total number in the solution, as the 

second objective after the maximisation of the number of transplants. As we can see in 

Figure 3., the total number of transplants has slightly increased, and the number of 

international tested has drastically decreased. 

Fig. 3. The effect of the maximisation of internal arcs on the number of transplants and the 

number of internal and external crossmatch tests. 

Finally, we tested the combination of maximisation of internal arcs, and conducting 

additional testing on internal arcs, which resulted in additional transplants. 

Fig. 4. The effect of the maximisation of internal arcs and additional testing runs of internal arcs 

on the number of transplants and the number of internal and external crossmatch tests. 
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3. Conclusion and future work

We extended the ENCKEP-simulator for testing re-optimisation policies for national 

and international KEPs. We could quantify the effects of various strategies for re-

optimisation, including multiple testing rounds, multiple testing round for the internal 

arcs only, fixing good cycles in the solutions, and prioritising internal arcs. 

As future work, we are planning to conduct much more simulations for each case, at 

least 1000, instead of 10, to get more robust findings. We will also consider further 

strategies and their combinations. Most importantly, we would also like to test these 

strategies on real datasets and understand better the nature of failures. In this paper we 

assumed that the failures are coming by incorrect virtual crossmatches, as traditional in 

the literature, that reflected past practices. However, the modern medical techniques 

create different types of failures: the high-resolution HLA-typing is more accurate, so 

the virtual crossmatch tests are almost as reliable as the laboratory tests, but the new 

possibility of HLA or ABO incompatible transplants might also lead to failures.   
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Ljubljana, Slovenia;

2 Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana,
Slovenia

janez.zerovnik@fs.uni-lj.si

Abstract. A double Roman dominating function on a graph G = (V,E)
is a function f : V → {0, 1, 2, 3} satisfying the condition that every ver-
tex u for which f(u) = 0 is adjacent to at least one vertex assigned 3
or at least two vertices assigned 2, and every vertex u with f(u) = 1 is
adjacent to at least one vertex assigned 2 or 3. The weight of f equals
w(f) =

∑
v∈V f(v). The double Roman domination number γdR(G) of

a graph G equals the minimum weight of a double Roman dominating
function of G. We summarize the known results on double Roman dom-
ination number of generalized Petersen graphs P (ck, k) including some
very recent improvements based on discharging method and graph cov-
ers.

Keywords: Double Roman domination · Generalized Petersen graph ·

Discharging method · Graph cover · Double Roman graph.

1 Introduction

Double Roman domination of graphs was first studied in [6], motivated by a
number of applications of Roman domination in present time and in history
[7]. The initial studies of Roman domination [17, 23] have been motivated by a
historical application. In the 4th century, Emperor Constantine was faced with
a difficult problem of how to defend the Roman Empire with limited resources.
His decision was to allocate two types of armies to the provinces in such a
way that all the provinces in the empire will be safe. Some military units were
well trained and capable of moving rapidly from one city to another in order
to respond to any attack. Other legions consisted of a local militia and they
were permanently positioned in a given province. The Emperor decreed that no
legion could ever leave a province to defend another if in this case they left the
province undefended. Thus, at some provinces two units were stationed, a local
militia units were stationed at others, and some provinces had no army. While
the problem is still of interest in military operations research [4], it also has
applications in cases where a time-critical service is to be provided with some
backup. For example, a fire station should never send all emergency vehicles to
answer a call.
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Similar reasoning applies in any emergency service. Hence positioning the fire
stations, first aid stations, etc. at optimal positions improves the public services
without increasing the cost. A natural generalization, in particular in the case
of emergency services, is the k-Roman domination [11], where in each district k
emergency teams are expected to be quickly available in case of multiple emer-
gency calls. Special case k = 2, the double Roman domination, is considered
here. It is well-known that the decision version of the double Roman domi-
nation problem (MIN-DOUBLE-RDF) is NP-complete, even when restricted to
planar graphs, chordal graphs, bipartite graphs, undirected path graphs, chordal
bipartite graphs and to circle graphs [15, 1, 5]. It is therefore of interest to study
the complexity of the problem for other families of graphs. For example, linear
time algorithms exist for interval graphs and block graphs [5], for trees [28], for
proper interval graphs [16] and for unicyclic graphs [15].

Another avenue of research that is motivated by high complexity of the prob-
lem is to obtain closed expressions for the double Roman domination number
of some families of graphs. This will be the topic of the talk at VOCAL 22
conference. In particular, generalized Petersen graphs and certain subfamilies of
generalized Petersen graphs have been studied extensively in recent years. The
results listed among related previous work include closed expressions for the dou-
ble Roman domination number of some, and tight bounds for other subfamilies
[8, 12, 20, 21]. For more results on double Roman domination we refer to recent
papers [2, 14, 25] and the references there. For more details on the recent results
to be discussed we refer to [18, 19].

2 Formal definitions

Let G = (V,E) be a graph without loops and multiple edges. As usual, we denote
with V = V (G) the vertex set of G and with E = E(G) its edge set.

A set D ⊆ V (G) is a dominating set if every vertex in V (G) \D has at least
one neighbor in D. The domination number γ(G) is the cardinality of a minimum
dominating set of G. A double Roman dominating function (DRDF) on a graph
G = (V,E) is a function f : V → {0, 1, 2, 3} with the following properties:

(1) every vertex u with f(u) = 0 is adjacent to at least one vertex assigned 3 or
at least two vertices assigned 2, and

(2) every vertex u with f(u) = 1 is adjacent to at least one vertex assigned 2 or
3 under f .

Define f(U) =
∑

u∈U f(u) as the weight of f on an arbitrary subset U ⊆
V (G). Then, the weight of f equals w(f) = f(V (G)) =

∑
v∈V (G) f(v). The

double Roman domination number γdR(G) of a graph G is the minimum weight
of a double Roman dominating function of G. A DRD function f is called a
γdR-function of G if w(f) = γdR(G).

For any double Roman dominating function f , defined on G we define a
partition of the vertex set V = V0∪V1∪V2∪V3, where Vi = V f

i = {u | f(u) = i}.
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Domination in graphs with its many varieties has been extensively studied
in the past [9, 10]. For more references we refer to full versions of the related
papers [18, 19].

Petersen graphs are among the most interesting examples when considering
nontrivial graph invariants. The generalized Petersen graph P (n, k) is a graph
with vertex set U ∪V and edge set E1 ∪E2 ∪E3, where U = {u0, u1, · · · , un−1},
V = {v0, v1, · · · , vn−1}, E1 = {uiui+1 | i = 0, 1, . . . , n − 1}, E2 = {uivi | i =
0, 1, . . . , n − 1}, E3 = {vivi+k | i = 0, 1, . . . , n − 1}, and subscripts are reduced
modulo n. Thus, we identify integers i and j iff i ≡ j mod n. (As usual, m ≡
r mod n means that m = kn+r, or equivalently, m−r = kn for some integer k ∈
Z.

It is well known that the graphs P (n, k) are 3-regular unless k = n
2 and that

P (n, k) are highly symmetric [27, 22]. As P (n, k) and P (n, n−k) are isomorphic,
it is natural to restrict attention to P (n, k) with n ≥ 3 and k, 1 ≤ k < n

2 .

3 Related previous Work

Results of the previous work are gathered in the following tables.

Table 2. Previously known results on double Roman domination number of
generalized Petersen graphs P (n, k) for small k.

n ≥ 3:

γdR(P (n, 1)) =





3n
2
, n ≡ 0 mod 4,

3n+3
2
, n ≡ 1, 3 mod 4,

3n+4
2
, n ≡ 2 mod 4

Shao et al. [20]

n ≥ 5:

γdR(P (n, 2)) =

{⌈
8n
5

⌉
, n ≡ 0 mod 5,

⌈
8n
5

⌉
+ 1, n ≡ 1, 2, 3, 4 mod 5.

Jiang et al. [12]

If G is a graph of maximum degree 4 ≥ 1: γdR(G) ≥
⌈

3|V (G)|
4+1

⌉
.

γdR(P (n, k)) ≥ d 3n
2
e. Shao et al. [20]

General upper bound is due to Gao et al. [8]. Let k ≥ 3. Then

γdR(P (n, k)) =
3n

2
, k ≡ 1 mod 2, n ≡ 0 mod 4.
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and

γdR(P (n, k))≤





3n
2 + 5k+5

4 , k ≡ 1 mod 4, n 6≡ 0 mod 4,

3n
2 + 5k+7

4 , k ≡ 3 mod 4, n 6≡ 0 mod 4,

3n
2

(3k+2)
(3k+1) , k ≡ 0 mod 4,

n ≡ 0 mod(3k+1),

d 3n2
(3k+2)
(3k+1)e+ 5k+4

4 , k ≡ 0 mod 4,
n 6≡ 0 mod(3k+1),

3n
2

(3k)
(3k−1) , k ≡ 2 mod 4,

n ≡ 0 mod(3k−1),

d 3n2
(3k)

(3k−1)e+ 5k+6
4 , k ≡ 2 mod 4,

n 6≡ 0 mod(3k−1).

Double Roman domination of families P (ck, k) has been studied recently for
small c, including c = 3, 4, and 5. The results are summarized below.

Table 2. Previously known results on double Roman domination number of
generalized Petersen graphs P (ck, k) for small c.

γdR(P (3k, k)) =

{
5k + 1, k ∈ {1, 2, 4}
5k, otherwise

Shao et al. [21]

k ≥ 1:

6k ≤ γdR(P (4k, k)) ≤
{

6k; k ≡ 1 mod 2
6k + 3; k ≡ 0 mod 2

k ≥ 2:

8k ≤ γdR(P (5k, k)) ≤
{

8k, k ≡ 2, 3 mod 5

8k + 2, otherwise
Rupnik P. et al. [18]

Table 3. Some special cases.

γdR(P (4, 1)) = 6, γdR(P (8, 2)) = 14, γdR(P (10, 2)) = 16 Jiang et al. [12]

γdR(P (12, 3)) = 18, γdR(P (5, 1)) = 9 Shao et al. [20]

23 ≤ γdR(P (15, 3)) ≤ 26 Gao et al. [8]

4 New results to be presented

Our recent results were obtained by application of the discharging method [20,
18] that is very well known due to its use in the famous proof of the four color
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theorem [3]. Another well known concept that can be very useful is the notion
of graph covers [24, 13]. Very recently, we have proved the next theorem.

Theorem 1. [19]

1. If c ≡ 0 mod 4 and k odd, then

γdR(P (ck, k)) =
3

2
ck

2. If c 6≡ 0 mod 4 and k odd, then

3

2
ck≤γdR(P (ck, k))<





3
2 (c+ 1

2 )k, c ≡ 1, 3 mod 4,

3
2 (c+ 2

3 )k, c ≡ 2 mod 4,

3. For k even, it holds

3

2
ck≤γdR(P (ck, k))≤





3
2c(k + 1

2 ), c ≡ 0 mod 4,

3
2 (c+ 1

2 )(k + 1
2 ), c ≡ 1, 3 mod 4,

3
2 (c+ 2

3 )(k + 1
2 ), c ≡ 2 mod 4,
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Abstract. In this short note we will present a method to parallelize
certain zero-one linear programs in which graph theoretical arguments
play the most important role. The ready availability of microprocessors
with a dozen or a few dozens of cores is our main motivation. In other
words we are aiming moderate scale parallelization. For supercomput-
ers with thousands of cores one should turn to different parallelization
ideas. In order to illustrate the suggested parallelization method we will
work out a small toy size numerical example in details. In addition we
will introduce preconditioning methods to simplify the resulting linear
programs. These preconditioning techniques are also motivated by graph
theoretical considerations.

Keywords: zero-one linear program, weighted maximum clique prob-
lem

1 Introduction

Let F be a finite family of subsets A1, . . . , An of a finite set U = {u1, . . . , um}.
Let c1, . . . , cn be non-negative weights assigned to A1, . . . , An, respectively. The
maximum weight packing problem is asking for locating pair-wise disjoint mem-
bers of F such that the sum of the weights of these elements is as large as
possible. This maximum weight packing problem can be stated as a zero-one
linear program P .

cx→ max

Ax ≤ b

Here x = [x1, . . . , xn]T, c = [c1, . . . , cn], b is the m by 1 matrix [1, . . . , 1]T.
Finally, A is an m by n matrix whose typical entry is βi,j . The entry βi,j is
equal to 1 if ui ∈ Aj and it is equal to 0 otherwise. The meaning of the decision
variable xi is the following. The value of xi is equal to 1 if the subset Ai is part
of a packing and xi is equal to 0 otherwise.

The maximum weight packing problem can be formulated as a maximum
weight clique problem as well.

Let G be a finite graph without any loop and double edge. A subset ∆ of
the nodes of G is a clique if any two distinct nodes are adjacent in ∆. Suppose
that a non-negative weight is assigned to each node of G. The maximum weight
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clique problem is asking for locating a clique ∆ in G such that the sum of the
weights of the nodes of ∆ is as large as possible.

We construct an agreement graph G whose nodes are the subsets A1, . . . , An.
Two sets Ai and Aj are adjacent in G whenever Ai and Aj are disjoint. To the
node Ai we assign ci as a weight. The basic observation we need is the following.
The cliques in G and the feasible solutions of the linear program P are in a
one-to-one correspondence.

The maximum weight packing problem instance can be solved using a zero-
one linear program solver or alternatively using a maximum weight clique solver.
On certain instance the linear program solver is more efficient than the clique
solver while for other instance the situation may be reversed.

In this short note we use the linear program solver but we wish to use infor-
mations provided by the clique approach. In particular, we will use intimate in-
formation from the clique reformulation to divide the linear program into smaller
parts what can be solved independently of each other. Secondly, the clique ap-
proach will help to establish upper bounds of the optimal value of the objective
function and consequently will help in reducing the search space of the proce-
dure. Finally the clique approach suggests preconditioning methods to simplify
the linear programs before feeding them into a solver.

Let W1, W2, W3 be pair-wise disjoint subsets of the nodes of the graph G
and assume that V is the set of nodes of G. Suppose that V = W1 ∪W2 ∪W3. If
in addition there is no edge of G is going from W1 to W3, then we say that the
triple (W1,W2,W3) is a splitting partition of G.

Let G1, G2 be the subgraphs of G induced by the set of nodes W1 ∪ W2,
W2 ∪W3, respectively.

Lemma 1. If ∆ is a maximum weight clique in the graph G, then ∆ is a max-
imum weight clique in either G1 or in G2.

This observation is proved in [3]. Lemma 1 allows to divide a maximum clique
problem instance into two smaller instances. It also allows to divide the program
P into two smaller programs P1 and P2. The programs P1, P2 are constructed
from P by equating the variables corresponding to the nodes in W3, W1 to zero,
respectively. (The variable xi and the node Ai are associated with each other.)

2 Preconditioning methods

It is a known fact that establishing tight upper bounds for the optimal value
of the objective function greatly reduces the searching space in the course of
solving a zero-one linear program. In the first part of this section we will show
that the agreement graph associated with the linear program may help finding
useful upper bounds for the value of the objective function.

Let G be the agreement graph associated with the zero-one linear program
P . We assign colors the nodes of G such that each node of G receive exactly one
color and adjacent nodes never receive the same color. This coloring is referred
as legal coloring of the nodes of G. A color class is a set of nodes receiving the
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same colors. Suppose that the nodes of G are legally colored using s colors and
C1, . . . , Cs are the colors classes. Let K be the following number. From each
colors class choose a representative node whose weight is maximum in its colors
class and add up the weight of these representative nodes.

Lemma 2. For each feasible solution of the program P the value of the objective
function is at most K.

Proof. The feasible solutions of the program P and the cliques in the graph G
are in a one-to-one correspondence of each other. Let ∆ be a clique in G such
that the sum of the weights of the nodes of ∆ is maximum. Each color class
contains at most one nodes from ∆. It follows that the sum of the weights of the
nodes of ∆ is at most K.

With a little extra work we may establish better upper bounds. For this
purpose we introduce a color index for each vertex v of the graph G. We compute
the following number K. The neighbors of v are distributed in the color classes
C1, . . . , Cs. It can happen that a color class does not contain any neighbor of
v. We toss out these color classes. From each remaining color class we choose a
representative neighbor whose weight is maximum in its color class and add up
the weights of these representative neighbors. Finally, we add the weight of v to
this sum. This number K is assigned to v and we refer to it as the color index of
v. The reader can verify the following basic observation about the color index.

Lemma 3. If ∆ is a clique in G whose total weight is K, then the color index
of each node of ∆ must be at least K.

It is a corollary to Lemma 3 that the largest of the color indices of the nodes
of the agreement graph G is an upper bound for the objective function of the
program P for each feasible solution of P .

We introduce a color index for each edge e = {u, v} of the agreement graph
G. We compute the following number K. The common neighbors of the nodes u,
v are distributed in the color classes C1, . . . , Cs. It can happen that a color class
does not contain any common neighbor of u, v. We sort out these color classes.
From each remaining color class we choose a representative common neighbor
whose weight is maximum in its color class and add up the weights of these
representative neighbors. Finally, we add the weights of u and v to this sum.
This number K is assigned to edge e and we refer to it as the color index of e.
The reader can verify the following basic observation about the color index.

Lemma 4. If ∆ is a clique in G whose total weight is K, then the color index
of each edge of ∆ must be at least K.

When we construct a legal coloring of the nodes of the agreement graph G we
are not trying to use the optimum number of colors. The reason is that finding
the chromatic number of a given graph is an NP hard optimization problem
itself. We use a simple greedy coloring procedure which can be completed in
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relatively quickly and we accept the fact that the number of the colors is not
optimal.

In the remaining part of this section we describe methods to delete nodes or
edges from the agreement graph G. Deleting nodes helps to set a certain variable
xi to be zero in the linear program P without changing the value of the optimal
solution. Deleting edges may help to find a better legal coloring of the nodes of
G or may help to find a better splitting partition of the nodes.

Let u, v be non-adjacent nodes of G. We say that u dominates v if N(v) ⊆
N(u), weight(v) ≤ weight(u) hold. Here N(u), N(v) are the set of neighbors of
u, v, respectively. Let e = {u, v}, f = {v, w} be distinct edges of G. We say that
e dominates f if the nodes u, w are not adjacent in G and [N(w) ∩ N(v)] ⊆
[N(v) ∩ N(u)], weight(w) ≤ weight(u) hold. The proof of the following lemma
can be found in [3].

Lemma 5. If node u dominates node v, then node v can be deleted from the
agreement graph G when we are looking for a maximum weight clique in G.
Similarly, if edge e dominates edge f , then edge f can be deleted from the agree-
ment graph G when we are looking for a maximum weight clique in G.

Lemma 5 tells us that it is reasonable to inspect the nodes and edges and
delete dominated nodes and edges. (For more sophisticated preconditioning meth-
ods see [2].)

3 A toy size small example

Let us start with a zero-one linear program P with 8 variables and 6 constraints
given by Table 1. The reader will notice that the program P is an instance of

Table 1. The given zero-one linear program P in the toy example.

x1 x2 x3 x4 x5 x6 x7 x8 ∈ {0, 1}
1 3 2 1 4 2 2 3 → max

(1) 1 1 1 ≤ 1

(2) 1 1 1 ≤ 1

(3) 1 1 1 ≤ 1

(4) 1 1 1 ≤ 1

(5) 1 1 1 ≤ 1

(6) 1 1 1 ≤ 1

the maximum weight set packing problem about 8 subsets

A1 = {u1}, A2 = {u3, u4, u5}, A3 = {u1, u2, u6}, A4 = {u4},

A5 = {u2, u3, u4}, A6 = {u1, u3, u6}, A7 = {u5, u6}, A8 = {u2, u5}
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of a 6 elements universal set U = {u1, . . . , u6}. Non-negative integer weights
1,3,2,1,4,2,2,3 are assigned to these sets, respectively. We are looking for a pair-
wise disjoint collection of the subsets such that the sum of the associated weights
is as large as possible.

The subsets can be described by an 6 by 8 incidence matrix depicted in Table
2. The rows are labeled by the elements of U and the columns are labeled by
the subsets A1, . . . , A8. The incidence matrix gives the coefficient matrix of the

Table 2. The incidence matrix of the subsets A1, . . . , A8 and the adjacency matrix of
the agreement graph G.

A1 A2 A3 A4 A5 A6 A7 A8

u1 • • •
u2 • • •
u3 • • •
u4 • • •
u5 • • •
u6 • • •

A1 A2 A3 A4 A5 A6 A7 A8

A1 × • • • • •
A2 • × •
A3 • × •
A4 • • × • • •
A5 • × •
A6 • × •
A7 • • • ×
A8 • • • ×

linear program P .

We construct an agreement graph G whose nodes are the subsets A1, . . . , A8.
The adjacency matrix of G is in Table 2. A possible geometric representation of
G can be seen in Figure 1.

@
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r r r

A6 (2)

A8 (3)

A4 (1)

A1 (1)

A7 (2)

A5 (4)

A3 (2)

A2 (3)

Fig. 1. A graphical representation of the agreement graph G in the toy example. The
numbers in parenthesis are the weights.
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Going through all cliques in the agreement graph G we located the clique
with nodes A1, A5, A7 whose weight is maximum. Of course, in case of a larger
graph this exhaustive inspection of the cliques is prohibitively time consuming.
We may conclude that x1 = x5 = x7 = 1, x2 = x3 = x4 = x6 = x8 = 0
is an optimal solution of the original P program. (For maximum weight clique
algorithms see [1].)

The reader can notice that there are no edges going from the set of nodes
{A2, A3} to the set of nodes {A5, A6, A7, A8} in the graph G and so the set

W1 = {A2, A3}, W2 = {A1, A4}, W3 = {A5, A6, A7, A8}
form a splitting partition of the node set of the graph G. Consequently, the
original linear program P can be replaced by two smaller programs P1 and P2.
These smaller program are contained in Table 3. A more systematic way to locate
splitting partitions can be found in [4].

Table 3. The two smaller zero-one linear programs P1 and P2 we get from the program
P in the toy example.

x1 x2 x3 x4 ∈ {0, 1}
1 3 2 1 → max

(1) 1 1 ≤ 1

(2) 1 ≤ 1

(3) 1 ≤ 1

(4) 1 1 ≤ 1

(5) 1 ≤ 1

(6) 1 ≤ 1

x1 x4 x5 x6 x7 x8 ∈ {0, 1}
1 1 4 2 2 3 → max

(1) 1 1 ≤ 1

(2) 1 1 ≤ 1

(3) 1 1 ≤ 1

(4) 1 1 ≤ 1

(5) 1 1 ≤ 1

(6) 1 1 ≤ 1
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4. Szabó, S., Zavalnij, B.: Splitting partitions and clique search algorithms, In: Middle-
European Conference on Applied Theoretical Computer Science. Editors: A Brod-
nik, G. Galambos, B. Kravsek, Ljubljana, 2019. pp. 75–78.

59

VOCAL 2022: Short Papers



Solving a dynamic route planning problem in the area of 

patient transport with mixed integer linear programming 

Martin Tóth1, Tamás Hajba2 and Adrián Horváth3 

1 Széchenyi István University, Győr, Hungary 
2 Széchenyi István University, Győr, Hungary 
3 Széchenyi István University, Győr, Hungary 

martin.toth0127@gmail.com 

Abstract: Consumer behavior has undergone a major transformation in recent years. On-

demand has become one of the most important expectations. There is a very short time 

available in passenger and freight areas to process, order and meet incoming needs. In order 

for service providers to meet this through the efficient use of available resources, they need 

to take a new planning approach to maintain their efficiency and maintain a high standard 

of service. Within passenger transport, there is a sub-sector that has received less emphasis 

in recent decades. And this is patient transport. Sick people have the opportunity to use 

patient transport services, but the route organization of these services is not efficient 

enough, the service is expensive. Yet there would be a need for a service that can help 

people travel to hospitals at the right level. In this article, we present the solutions available 

abroad and a suitable mathematical model that can solve the transport organization task 

quickly and efficiently in the case of a vehicle. We also take into account the fact that 

patients can set their own maximum travel time and it is not up to the operating company 

to decide. We also pay attention for that there are patient who needs more space on the 

vehicle (e.g. wheelchair users), so the passengers are heterogeneous in this system. The 

usability of the model is also illustrated through an example. 

Keywords: dial a ride problem, ridesharing, patient transport, mixed integer linear 

programming 

Introduction 

Expectations regarding the quality of passenger and freight transport services have been 

growing and changing in recent years. One reason for this is that transportation 

providers have introduced new services that have increased user convenience in order 

to gain a competitive advantage. Typical examples of this there are a possibility to given 

several delivery address, modification of transport addresses and the shortening of 

delivery time. In the field of passenger transport, various taxi companies, public 
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transport services, while in the field of freight transport, parcel carriers and courier 

companies are the main stakeholders in these changes. While the new services provide 

users with a high degree of convenience, they incur significant additional costs for 

operators when planning and managing their implementation using traditional 

procedures. In order to achieve efficient operation and resource utilization, companies 

providing passenger and freight transport strive in some way to optimize the route of 

their vehicles and maximize their capacity utilization. Traditional route planning 

procedures are characterized by a large time difference between the planning and 

execution of transportation tasks and in the regard of passenger transportation, the 

organization of one shipment to one vehicle. However, this is inflexible to new 

consumer expectations and not effective enough. (Gillett, 1974). 

This special route planning problem in the field of passenger transport is called the 

Dial a Ride problem (Daganzo et al., 2019).  

The Dial-a-Ride Problem (DARP) consists of designing vehicle routes and schedules 

for n users who specify pickup and delivery requests between origins and destinations. 

Very often the same user will have two requests during the same day: an outbound 

request from home to a destination, and an inbound request for the return trip. In the 

standard version, transport is supplied by a fleet of m identical vehicles based at the 

same depot. The aim is to plan a set of minimum cost vehicle routes capable of 

accommodating as many requests as possible, under a set of constraints (Jean-François 

Cordeau, 2007). The most common example arises in door-to-door transportation 

services for elderly or disabled people (see, e.g., Toth and Vigo, 2002; Andrew Lim, 

2018; Yves Molenbruch, 2017; Timothée Chane-Haï, 2021). 

1. Problem description

One specific area of passenger transport is patient transport. While there is an increasing 

emphasis on different passenger services, this is not true with patient transport. Patient 

transport services in Hungary use inflexible planning procedures and focus on only 1-

1 patients. At present, patient transport services in Hungary have the following 

characteristics: 

• Door-to-door service

• The patient travels alone (Family members may be in the vehicle)

• Transport for the disabled and inpatients is also possible

• Patients can determine when they want to arrive at the hospital

• The amount of the round trip is between approx. 15,000 and 30,000 HUF (approx.

40 - 80 EUR). It is cheaper within the city, more expensive when traveling to or from 

the countryside. 

These options provide a high-quality service to patients, but are very expensive. 

These services are mostly used by those who have some serious illness. On the other 

hand, people who only go for tests choose a different solution. These solutions can be 

provided by public transport, using your own vehicle, using different taxi companies, 

or approaching the hospital on foot or by bicycle.  
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At present, there is no patient transport service in Hungary that collects patients and 

transports them together to the hospital. 

In our study we are looking for solution for a system, where patients are 

heterogeneous (normal patients and patients with reduced mobility (eg wheelchair 

users)). These characteristics must be taken into account when using the vehicle's 

capacity (eg wheelchair uses need more space on the vehicle). And we have to pay 

attention for, that the patients have different need about travelling time. So in this 

system they can they can determine the maximum amount of travel time they are willing 

to spend on the vehicle. Generally, this time is set uniformly for passengers by the 

operating companies. 

2. Presentation of the model used for route planning

There is a depot, a hospital, and set of N locations from which patients must be 

transported to the hospital. Patients are transported by 1 vehicle. At the first delivery 

task it leaves the depot, the start point of the other tasks is the hospital. Then returns to 

the depot after taking the last patient to the hospital. The depot has an opening hours; 

the vehicle must leave the depot and return to the depot within this time interval. It is 

known how many patients and wheelchair users the vehicle can carry at one time. For 

each (i, j) pair, where the elements of i and j (depot, hospital, locations) are known, the 

time from i to j and the distance between i and j are known. The following are known 

for each location: 

• the number of patients and disabled patients awaiting removal

• a date before which patients may not be admitted to the vehicle at that

location

• a time by which patients must arrive at the hospital at the latest;

• maximum travelling time which patients cannot be longer on the

vehicle.

• the time of boarding the vehicle for patients at that location

It is assumed that the number of patients and disabled patients at any location does 

not exceed the capacity of the vehicle. We also stipulate that if a vehicle goes to a 

particular location, it will pick up all the patients in a wheelchair waiting there. The 

goal is to determine the route of the vehicle that minimizes the total travel distance.  

2.1. Parameters 

• N: Number of pick up locations 

• 0: Depot (starting point) 

• N+1 Hospital 

• K: Number of delivery tasks 

• D ij: Travel distance between points i and j. 

• T i,j: Travel time between points i and j. 

• Cp: Maximum capacity of the vehicle for patients 

• Cdp: Maximum capacity of the vehicle for disabled patients 
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• I i: Maximum travel time for different patients. 

• p i: The number of patients in the point i. 

• dp i: The number of disabled patients in the point i. 

• a i: Boarding time in the point i.  

• A0: The opening time of the service company 

• B0: Closing time of the service company 

• treq: Earliest admission date for patients 

• tarr: Patient requested arrival time at the hospital 

2.2. Variables 

• startk: Starting time of K task. 

• endk: Ending time of K task. 

• pnum i: The number of patients in the vehicle after new patients got 

into the vehicle at point i. 

• dpnum i: The number of disabled patients in the vehicle after new  

patients got into the vehicle at point i. 

• xi,j
k: Binary variable, value 1, if the vehicle is will go to point j  

after point i. otherwise 0. 

• w i: Travel time is for patient of i. 

• m i: Time of arrival at point j. 

2.3. Objective function 

The goal of the mathematical model is to minimize the travel distance, what the 

vehicle has to do. 

min ∑ ∑ ∑ 𝐷𝑖,𝑗

𝐾

𝑘=1

𝑁+1

𝑗=0

𝑁+1

𝑖=0

∗ 𝑥𝑖,𝑗
𝑘   (1) 

2.4. Restrictive conditions 

Vehicle only go once to each point: 

∑ ∑ 𝑥𝑖,𝑗
𝑘

𝐾

𝑘=1

𝑁+1

𝑖=0

= 1    ∀ 1 ≤ 𝑗 ≤ 𝑁   (2) 

Customers do not be start or end points: 

∑ 𝑥𝑖,𝑗
𝑘 − ∑ 𝑥𝑗,𝑖

𝑘

𝑁+1

𝐽=0

𝑁+1

𝑗=0

= 0    ∀ 1 ≤ 𝑗 ≤ 𝑁   (3) 
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The starting point for the first delivery task has to be the depot: 

∑ 𝑥0,𝑖
1

𝑁

𝑖=1

= 1    (4) 

Do not arrive at the depot in the first trip, but return to the depot in the last trip: 

∑ 𝑥𝑖,0
1

𝑁

𝑖=1

= 0    (5 𝑎) 

𝑥𝑛+1,0
𝑘 = 0    1 ≤ 𝑘 ≤ 𝐾   (5 𝑏) 

Hospital can not be the starting point for vehicle in the first round: 

∑ 𝑥𝑛+1,𝑖
1

𝑁

𝑖=1

= 0    (6) 

Vehicle has to arrive at the hospital in the first round: 

∑ 𝑥𝑖,𝑛+1
1

𝑁

𝑖=1

= 1    (7) 

From the 2nd round the depo can not be the starting and the end point: 

∑ 𝑥0,𝑖
𝑘

𝑁

𝑖=1

= 0    2 ≤ 𝑘 ≤ 𝐾   (8) 

Starting from round 2, the depot cannot be an endpoint: 

∑ 𝑥𝑖,0
𝑘

𝑁

𝑖=1

= 0    2 ≤ 𝑘 ≤ 𝐾 − 1    (9) 

Starting from round 2, hospital is the starting and the end point: 

∑ 𝑥𝑖,𝑛+1
𝑘

𝑁

𝑖=1

= ∑ 𝑥𝑛+1,𝑖
𝑘   2 ≤ 𝑘 ≤ 𝐾   (10)

𝑁

𝑖=1

 

A k. the vehicle can only go to the hospital once per round: 

∑ 𝑥𝑖,𝑛+1
𝑘

𝑁

𝑖=1

≤ 1    2 ≤ 𝑘   (11) 

The change in the number of patients in the vehicle at the loading points: 

𝑝𝑛𝑢𝑚 𝑖 + 𝑝𝑗 + 𝑀 ∗ (𝑥𝑖,𝑗
𝑘 − 1) ≤ 𝑝𝑛𝑢𝑚 𝑗

  0 ≤ 𝑖 ≤ 𝑁 + 1;  1 ≤ 𝑗 ≤ 𝑁;  1 ≤ 𝑘 ≤ 𝐾   (12) 
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Change in the number of patients with reduced mobility in the vehicle at the loading 

points: 

𝑑𝑝𝑛𝑢𝑚 𝑖 + 𝑑𝑝𝑗 + 𝑀 ∗ (𝑥𝑖,𝑗
𝑘 − 1) ≤ 𝑑𝑝𝑛𝑢𝑚 𝑗

  0 ≤ 𝑖 ≤ 𝑁 + 1;  1 ≤ 𝑗 ≤ 𝑁;  1 ≤ 𝑘 ≤ 𝐾                            (13) 

When the vehicle begins the transportation task, it must be ensured in the model that 

the number of vehicle capacity for both passengers and patients with reduced mobility 

starts from 0. Transport tasks can start from the depot and the hospital, so the conditions 

are needed for these starting points: 

𝑝𝑛𝑢𝑚 0 = 0    (14) 

𝑝𝑛𝑢𝑚 𝑛+1 = 0    (15) 

𝑑𝑝𝑛𝑢𝑚 0 = 0    (16) 

𝑑𝑝𝑛𝑢𝑚 𝑛+1 = 0    (17) 

The number of patient in the vehicle cannot higher than the capacity of the vehicle: 

𝑝𝑛𝑢𝑚 𝑖 ≤ 𝐶𝑝    (18) 

𝑑𝑝𝑛𝑢𝑚 𝑖 ≤ 𝐶𝑝    (19) 

In the model, care shall be taken to ensure that the vehicle is fitted with the i. the 

time in point j shall be less than that in point j. date is specified in point. Thus, the 

transport tasks that arise take into account the passengers' requested pick-up times. 

However, time factors that affect the travel time between points i and j (eg boarding 

time in point i) must also be taken into account. In addition, when determining transport 

tasks, the desired time of arrival at the hospital should not be compromised:  

𝑚𝑖 + 𝑇𝑖,𝑗 + 𝑎𝑖 + 𝑀 ∗ (𝑥𝑖,𝑗
𝑘 − 1) ≤ 𝑚 𝑗

1 ≤ 𝑖 ≤ 𝑁;  1 ≤ 𝑗 ≤ 𝑁;  1 ≤ 𝑘 ≤ 𝐾                                         (20) 

𝑚𝑖 + 𝑇𝑖,𝑛+1 + 𝑎𝑖 + 𝑀 ∗ (𝑥𝑖,𝑛+1
𝑘 − 1) ≤ 𝑒𝑛𝑑𝑘   1 ≤ 𝑘 ≤ 𝐾     (21) 

𝑠𝑡𝑎𝑟𝑡1 + 𝑇0,𝑖 + 𝑀 ∗ (𝑥0,𝑖
1 − 1) ≤ 𝑚𝑖   1 ≤ 𝑖 ≤ 𝑁      (22) 

𝑠𝑡𝑎𝑟𝑡𝑘 + 𝑇𝑛+1,𝑖 + 𝑀 ∗ (𝑥𝑛+1,𝑖
𝑘 − 1) ≤ 𝑚𝑖   2 ≤ 𝑘 ≤ 𝐾      (23) 

Consideration of patient-requested boarding times: 

𝑡𝑟𝑒𝑞 𝑖  ≤  𝑚𝑖                                 1 ≤ 𝑖 ≤ 𝑁                     (24)

The i. Include the travel time and boarding times for patients admitted under (i) and 

(j) in the travel time of patients admitted under:

𝑎𝑖 + 𝑇𝑖,𝑛+1 + 𝑀 ∗ (∑ 𝑥𝑖,𝑛+1
𝑘 − 1) ≤ 𝑤𝑖

   1 ≤ 𝑖 ≤ 𝑁;  1 ≤ 𝑗 ≤ 𝑁 + 1;  1 ≤ 𝑘 ≤ 𝐾      (25 𝑎) 

𝑚𝑗 − 𝑚𝑖 + 𝑤𝑗 + 𝑀 ∗ (∑ 𝑥𝑖,𝑗
𝑘 − 1) ≤ 𝑤𝑖

  1 ≤ 𝑖 ≤ 𝑁;  1 ≤ 𝑗 ≤ 𝑁 + 1;  1 ≤ 𝑘 ≤ 𝐾   (25 𝑏) 
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Patients should also be required to determine the length of maximum time they 

would like to be in the vehicle: 

𝐼𝑖 ≥ 𝑤𝑖   (26) 

The start of the first round cannot be bigger than the opening date of the company: 

𝑠𝑡𝑎𝑟𝑡1 ≥ 𝐴0   (27) 

The start time of the last round and the travel time of the vehicle from the hospital 

to the depot cannot be bigger than the closing time of the company: 

𝑒𝑛𝑑𝑘 + 𝑇𝑛+1,0 ≤ 𝐵0   (28) 

The start time of k+1 circle should be bigger than at the end of the round k: 

𝑠𝑡𝑎𝑟𝑡𝑘+1 ≥ 𝑒𝑛𝑑𝑘             1 ≤ 𝑘 ≤ 𝐾 − 1    (29) 

The start time of the k circle must be less than endpoint of k circle: 

𝑠𝑡𝑎𝑟𝑡𝑘 ≤ 𝑒𝑛𝑑𝑘                    1 ≤ 𝑘 ≤ 𝐾   (30) 

The vehicle departing from the i-th place can not go to the i-th place: 

𝑥𝑖,𝑖
𝑘 = 0   0 ≤  i ≤  N + 1;  1 ≤ 𝑘 ≤ 𝐾   (31) 

Modell must pay attention for the patients requested arrival time 

𝑡𝑎𝑟𝑟 𝑖 ≥ 𝑚𝑖 + 𝑤𝑖    (32) 

The customers have to arrive to the destination point between the requested time and 

before it with 15 minutes: 

𝑡𝑎𝑟𝑟 𝑖 − 15 ≤ 𝑚𝑖 + 𝑤𝑖    (33) 

3. Conclusion

In this paper, we presented mathematical model, which is based on mix integer linear 

programming and tested in IBM ILOG CPLEX Optimization Studio. The result shows, 

that we can solve such a Dial – a – Ride problems, where customers can determine to 

earliest loading time, latest delivery time and the maximum length of travel time. The 

customer needs were known in advance, but this model can also use for dynamic system 

too, just we have to use Sequential planning.  
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The mentioned model can lead to better and more cost-effective solutions, because 

it can guarantee optimal solution of delivery tasks on faster way, than with traditional 

on-demand systems. Operating companies can maximize the capacity utilization of 

their fleet, and this will also reduce CO2 emissions too. Furthermore, customer get a 

such service, which they can be modified to their own convenience. This can help to 

companies to sell their services against others. 

We will also focus on the following aspects later, in the interest of this model would 

be used by companies. These aspects are: 

• Passenger conflicts (eg passengers with an infectious could not travel with

other patients)

• Vehicle cleaning time (eg after certain transport tasks the vehicle has to

stop for cleaning and disinfection)

• More vehicles be in the system

• The model has to also determine delivery tasks from hospital, not only to

there.

• The starting point of the transport task should be the last end point of the

previous transport task (this is relevant if the vehicle is already picking up

passengers from the hospital).

This requires needed further research. 
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Abstract. The objective of simple assembly line balancing problem type1 is to minimize the number 

of workstations organized to perform tasks with precedence constraints. In assembly lines, where 

manual tasks are executed repeatedly, learning can have a significant effect on the operation. In this 

case, when the minimal number of workstations is determined, the change of task times as a 

consequence of learning must be considered. This paper investigates the effect of learning on the 

minimum number of workstations when simple assembly line balancing problems are solved. A 

modified simple assembly line balancing model incorporating the learning effect is formulated, and 

two benchmark problems with different characteristics are analysed. 

Keywords: Assembly line balancing, simple assembly line, learning curve, mathematical 

programming. 

1. Introduction

Assembly lines, which demand manual labor, are an example of a manufacturing 

environment where learning effects are essential to determine task time. Balancing an 

assembly line implies assigning assembly tasks to workstations to maximize a specific 

performance measure without violating precedence constraints. Most techniques focus on 

simple assembly line balancing problems (SALBP) of types 1 and 2 [2]. The type1 problem 

(SALBP-1) aims to minimize the number of workstations required to meet a specific cycle 

time, whereas the type2 problem (SALBP-2) aims to minimize the cycle time for a fixed 

number of workstations [1]. 

Because of workers’ learning, task times may decrease. That is, the lower the task times, 

the higher the quantity of assembled products. As a result of task time decrease the best 

balancing solution changes over time. In this paper SALP-1 with the learning effect is 

investigated. 

This research aims to solve the simple assembly line balancing problem type1(SALBP-

1) by incorporating a learning curve (LC) into the basic model. For this purpose, the 

Wright’s power function was selected [5]. The main contribution of the paper is the

formulation of a modified SALBP model, which can be used to determine the minimum
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number of workstations when the learning effect occurs. The effects of the learning curve, 

the learning rates, and the problem complexity on the optimal solutions are investigated. 

The rest of this paper is organized as follows. Section 2 outlines the formulation of the 

modified SALBP-1 model. Section 3 describes the benchmark problems. Section 4 

illustrates the application of the modified model and discusses the obtained results. Finally, 

the main results are summarized, and some conclusions are given. 

2. Formulation of the modified SALB-1 model

In this section, the modified SALBP-1 model used in this paper is presented. The applied 

notations are summarized in table 1. Tasks are numbered in a continuously increasing order. 

The number 𝑖 assigned to a task is called the task index. We refer to a task either by its name 

or task index. Those tasks which are not succeeded by any other task are called last tasks. 

The index set of last tasks is denoted by 𝐹. 

Workstations are also numbered in a continuously increasing order. The first workstation 

is numbered 1, and the last workstation is numbered 𝐽 . The number 𝑗  assigned to a 

workstation is called the workstation index. Workstations are referred to in this paper by 

the workstation index. Similarly, workers are numbered in a continuously increasing order. 

We refer to a worker by its index 𝑘, which is a number between 1 and 𝐾.  is the number of 

available workers. 
The assignment of tasks and workers to workstations is expressed with the 𝑥𝑖𝑗𝑘  binary 

decision variable. If task 𝑖 and worker 𝑘 are assigned to the same workstation 𝑗, then 𝑥𝑖𝑗𝑘  =

1, otherwise 𝑥𝑖𝑗𝑘= 0. Similarly, the assignment of workers to workstations is expressed with

the 𝑦𝑗𝑘  binary decision variable. If worker 𝑘 is assigned to workstation 𝑗, then 𝑦𝑗𝑘  = 1,

otherwise 𝑦𝑗𝑘 = 0. The following integer linear programming formulation of the modified 

SALBP-1 is used in this paper, 

𝑀𝑖𝑛 (𝑁) (1) 

∑ ∑ 𝑡𝑖𝑘𝑥𝑖𝑗𝑘 ≤ 𝑇𝑐  

𝐾

𝑘=1

𝐼

𝑖=1

∀𝑗 (2) 

∑ ∑ 𝑥𝑖𝑗𝑘 = 1

𝐾

𝑘=1

𝐽

𝑗=1

∀𝑖 (3) 

∑ 𝑗(𝑥𝑞𝑗𝑘 − 𝑥𝑝𝑗𝑘) ≥ 0

𝐽

𝑗=1

∀(𝑝, 𝑞) ∈ 𝑅 (4) 

𝑥𝑖𝑗𝑘 ≤ 𝑦𝑗𝑘 ∀ 𝑖, 𝑗, 𝑘 (5) 

∑ 𝑦𝑗𝑘 ≤ 1

𝐽

𝑗=1

∀𝑘 (6) 
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∑ 𝑦𝑗𝑘 ≤ 1

𝐾

𝑘=1

∀𝑗 (7) 

∑ ∑ 𝑗𝑥𝑖𝑗𝑘 ≤ 𝑁

𝐾

𝑘=1

𝐽

𝑗=1

∀𝑖 ∈ 𝐹 (8) 

3. Problems’ description

To illustrate the performance of the presented model, let us consider two SALBP-1 

benchmark problems (named by the authors Mansoor and Rosenberg) with different 

characteristics and complexity levels taken from Scholl (1995) [4]. The precedence graphs

of the two problems are as follows:

Table 2 summarizes the characteristics and the complexity measures for each of the two 

problems. 

Table 2. Benchmark problems' characteristics and complexity measures. 

Benchmark 

Problem 

Characteristics Complexity measures 

Tc 𝑁∗ 𝐼 𝑆𝑂(%) 𝑊𝑅 
Rosenberg 14 10 25 71.7 2.5 

Mansoor 48 4 11 60 2.75 

Comparing the complexity measures of the two problems, we notice that Rosenberg 

problem has a higher number of tasks (25 against 11) and strength order (71.1 against 60) 

with a smaller west ratio (2.5 against 2.75). It can be concluded that Rosenberg problem is 

more complex than Mansoor problem. 

Fig.1.  Rosenberg precedence graph. 

Fig.2. Mansoor precedence graph. 
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Table 1. Summary of notation applied in the model. 

Summary of notations: 

Indices: 
𝑖   = index of tasks (𝑖=1 ,…, І),  
p    = index of subtasks, 
q    = index of subtasks, 
j    = index of workstations (𝑗=1,.., J), 
k    = index of workers (𝑘=1,…, K), 

Parameters: 

I    = number of tasks, 
J    = maximum number of workstations, 
𝑁∗     = minimum number of stations (the result of the station number minimization of the basic 

     SALBP-1 model), 
K  = number of available workers (𝐾>=𝑁∗), 
𝑡𝑖   = initial task time of task 𝑖, 
Tc    = cycle time, 
𝑄𝑖𝑘    = rank of the part on which task 𝑖 is performed by worker 𝑘, 
𝑡𝑖𝑘 = time necessary to perform task 𝑖 by worker 𝑘 on 𝑄𝑖𝑘  ( 𝑡𝑖𝑘 = 𝑡𝑖 . (𝑄𝑖𝑘)𝑏),

b    = power of the learning curve function, 
𝐿  = learning rate (𝐿 = 2𝑏),

SO    = strength order of the precedence graph (𝑆𝑂 = 𝐼. (𝐼 − 1) 2⁄ ), 

WR    = west ratio (𝐼/𝑁∗),

Sets: 

𝐹    = set of final tasks, 𝑖 ∈ 𝐹, if task 𝑖 does not precede any other task, 
R    = set of pair of indices which belong to tasks with precedence relations, that is, (𝑝; 𝑞)  ∈  𝑅, if  

  task 𝑝 immediate precedes task 𝑞, 

Decision variables: 

𝑁        = objective function variable for the number of workstations, 

N*       = minimal number of workstations, 
𝑥𝑖𝑗𝑘    = 0-1 decision variable, if 𝑥𝑖𝑗𝑘=1, then task 𝑖 is performed by worker 𝑘 at workstation 𝑗, 

otherwise 𝑥𝑖𝑗𝑘=0, 

 𝑦𝑗𝑘     = 0-1 decision variable; if  𝑦𝑗𝑘 =1, then worker 𝑘 is assigned to workstation 𝑗, otherwise 

 𝑦𝑗𝑘     = 0
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4. Modified SALBP-1 model application and results

4.1 The effect of learning on the optimal number of WSs 

The Wright learning curve was chosen to analyze the effect of learning on the optimal 

number of stations. In this case, three learning rates were selected: 0.85, 0.9, and 0.95, which 

gives the corresponding three values of b respectively: -0.23, -0.15, and -0.07.  
For the sake of simplicity, it is assumed that work-in-process inventory cannot 

accumulate between stations. This implies that the worker assigned to station (𝑗 + 1) cannot 

start the execution of task(s) unless the worker assigned to station 𝑗 has finished the tasks 

of the upcoming part. 

The solution of the modified SALBP-1 model defined for the chosen learning curve 

demands a flexible mathematical modeling tool. Such a tool is provided by the AIMMS 

Prescriptive Analytics Platform, which is often applied for solving commercial optimization 

problems [3]. 

To track the evolution of the minimum number of workstations as the workers’ learning 

evolves, the model is solved after the production of each unit. This means that when a unit 

exits the last station, the station times are updated according to the learning curve, and the 

problem is resolved. Since the learning effect is dominant only at the beginning of the 

production run, the solution is repeated for the first 100 produced units. 

Rosenberg problem. Figure 3 shows the minimum number of WSs in function of the 

output units 𝑄 while the learning effect occurs. It can be seen that for all the three learning 

rates (𝐿=0.85/0.9/0.95), the minimum number of workstations after the production of the 

first unit(𝑄=1) is 10. At this stage, the workers have not progressed yet along the learning 

curve, since the learning effect has not started yet. 

Fig. 3.  Rosenberg problem: Evolution of the 

minimum number of WSs during learning. 

Fig. 4.  Mansoor problem: Evolution of the 

minimum number of WSs during learning. 

72

VOCAL 2022: Short Papers



As the workers repeat the assigned tasks, task times decrease exponentially causing the 

station times to decrease. The station times keep dropping until fewer stations are required 

to satisfy the predetermined cycle time constraint. For instance, for 𝐿=0.85 the minimum 

number of WSs dropped from 10 to 9 at 𝑄=2, to 8 at 𝑄=4, to 7 at  𝑄=7, to 6 at 𝑄=17, and 

finally to 5 at 𝑄=72. In the case of 𝐿=0.9 and 0.95, we could only reach 7 and 8 stations, 

respectively, because of the slow learning rates.  

Mansoor problem. Figure 4 shows that the minimum number of WSs starts at 4 for the 

three learning rates (𝐿=0.85/0.9/0.95). As the learning effect evolves, for 𝐿=0.85 and 0.9 

the minimum number of WSs decreased to 3 at 𝑄=6 and 13, respectively. However, for 

𝐿=0.95, no drop in the minimal number of WSs is witnessed because of the slow learning 

effect. 

5. Conclusion

In this paper, a modified SALBP-1 model incorporating the learning effect is formulated 

and applied. The modified SALBP-1 model developed in section 2 is illustrated with two 

benchmark problems with different characteristics and complexity levels in section 4. The 

Wright learning curve was selected for our model because of its extended use in practice. 

The model, however, can be adapted to any other learning curve.  

In the illustrative examples, three different learning rates were chosen: 0.85, 0.9, and 

0.95. The results showed that regardless of the learning rate, the minimum number of 

workstations at the start of production (𝑄=1 unit) is the same as the basic SALBP-1 model. 

However, as production progresses, it decreases along with the output units due to the 

learning effect. Additionally, the higher the learning rate, the slower the minimum number 

of workstations decrease. 

The results also revealed that a problem with higher complexity level requires more 

optimal number of stations at the start of production and therefore has a higher potential to 

witness more stations’ drops along with the produced units due to the learning effect. 
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